6oqr: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
== | ==E. coli ATP Synthase ADP State 1a== | ||
<StructureSection load='6oqr' size='340' side='right'caption='[[6oqr]]' scene=''> | <StructureSection load='6oqr' size='340' side='right'caption='[[6oqr]], [[Resolution|resolution]] 3.40Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6OQR OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6OQR FirstGlance]. <br> | <table><tr><td colspan='2'>[[6oqr]] is a 22 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6OQR OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6OQR FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6oqr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6oqr OCA], [http://pdbe.org/6oqr PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6oqr RCSB], [http://www.ebi.ac.uk/pdbsum/6oqr PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6oqr ProSAT]</span></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">atpH, AB67_4411 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895]), atpA, AD31_4476 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895]), atpF, ECDG_04362 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895]), atpC, A1WS_04460 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895]), atpG, BN16_43751 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895]), atpD, WLH_03015 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895]), atpE, ECJG_03465 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895]), atpB, A6581_09625, A8C65_04635, A8G17_13205, A9819_21465, AC789_1c41260, ACN002_3840, ACN77_20010, ACN81_06510, ACU57_03300, ACU90_00315, AKG99_01200, AM464_11965, AMK83_17435, AML07_02005, AML35_23925, APZ14_19970, AU473_02230, AUQ13_19445, AUS26_01135, AW059_18665, AW106_23235, B1K96_28785, B7C53_19560, BANRA_02401, BANRA_03128, BANRA_03214, BANRA_04536, BANRA_04611, BB545_21600, BHF46_03220, BHS81_22305, BIZ41_19310, BK292_20055, BK400_00980, BMT53_14990, BMT91_10650, BN17_36921, BTQ04_25560, BTQ06_19305, BUE81_18230, BVL39_06790, BW690_12705, BWP17_17405, BZL31_21415, C2U48_14255, C4J69_12205, C5N07_23075, C5P01_14375, C5P43_18495, C5P44_14015, C6669_08960, C7235_25075, C7B02_15545, C7B06_18115, C7B07_18555, CA593_07300, CG691_14695, CG692_21460, CG705_13230, CG706_05505, COD30_14545, COD46_05110, CR538_25535, CR539_00375, CRD98_06365, CRE06_22220, CRM83_19985, CV83915_02325, CVH05_22810, CWS33_22485, D0X26_21590, D2F89_18645, D3821_26125, D3I61_22220, D6Z21_17295, D7K63_14130, D8K42_12760, D9D20_15080, D9D23_18435, D9D65_17115, D9D69_04800, D9D77_23770, D9E35_19420, D9F57_04785, D9G42_23250, D9H12_19550, D9H53_20710, D9H66_14770, D9H68_12120, D9H70_07975, D9H84_13135, D9I18_08055, D9I52_22315, D9I93_11990, D9J11_15870, D9J44_15620, D9J48_14640, D9K10_12565, DIV22_14605, DL800_26315, DL925_10465, DLU27_05670, DM262_10125, DMI41_02740, DNQ45_04220, DOT75_06920, DP258_23940, DP277_10610, DQF57_16240, DS732_00235, DTL43_15450, DTL90_16085, DV750_19840, E2855_04743, EAI42_11905, EAI44_10320, EAI52_06435, EB510_22250, EB553_22600, EB569_11805, EB595_21530, EC1094V2_4559, EC3234A_68c00800, EC95NR1_03180, ECs4680, ED060_20795, ED098_20360, ED124_20405, ED133_14365, ED287_08070, ED600_20035, ED648_17305, ED653_18700, ED658_09750, ED944_14625, EEP03_14120, EEP23_14845, EF364_23525, EFV06_19295, EIA21_14165, EL75_4432, EL79_4683, EL80_4591, ERS085374_04660, ERS085379_02386, ERS085383_02615, ERS085386_04244, ERS085404_04407, ERS150876_04315, FORC28_6046, GJ11_23870, HW43_00205, JD73_04915, NCTC10090_03054, NCTC10418_07533, NCTC10429_00459, NCTC10444_05020, NCTC11022_03985, NCTC11126_01888, NCTC11181_02279, NCTC13125_03147, NCTC13127_06463, NCTC13462_03577, NCTC7152_05030, NCTC8179_05398, NCTC8622_01220, NCTC8960_02611, NCTC9036_04909, NCTC9037_05079, NCTC9045_05855, NCTC9054_05546, NCTC9055_01929, NCTC9058_01885, NCTC9062_03146, NCTC9073_06659, NCTC9111_05225, NCTC9117_06282, NCTC9119_05322, NCTC9701_05266, NCTC9703_04488, NCTC9706_02267, NCTC9969_05235, PU06_21025, RG28_23995, RK56_018685, RX35_03591, SAMEA3472044_00548, SAMEA3472047_02992, SAMEA3472055_04839, SAMEA3472056_03685, SAMEA3472067_04030, SAMEA3472070_05212, SAMEA3472080_03392, SAMEA3472108_02423, SAMEA3472114_05011, SAMEA3472147_03706, SAMEA3484427_03569, SAMEA3484429_03570, SAMEA3484433_04143, SAMEA3485101_04107, SAMEA3752557_01245, SAMEA3752559_04742, SAMEA3753064_05400, SAMEA3753097_00985, SAMEA3753290_05396, SAMEA3753300_04372, SAMEA3753397_02464, SK85_04068, UN86_05680, UN91_09915, WQ89_11300, WR15_16550 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/H(+)-transporting_two-sector_ATPase H(+)-transporting two-sector ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=7.1.2.2 7.1.2.2] </span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6oqr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6oqr OCA], [http://pdbe.org/6oqr PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6oqr RCSB], [http://www.ebi.ac.uk/pdbsum/6oqr PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6oqr ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | |||
[[http://www.uniprot.org/uniprot/A0A192CEZ8_ECOLX A0A192CEZ8_ECOLX]] Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits.[HAMAP-Rule:MF_01347] [[http://www.uniprot.org/uniprot/D6IFY0_ECOLX D6IFY0_ECOLX]] Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0).[HAMAP-Rule:MF_01398][SAAS:SAAS00535352] F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.[HAMAP-Rule:MF_01398][SAAS:SAAS00002149] [[http://www.uniprot.org/uniprot/F4TL55_ECOLX F4TL55_ECOLX]] F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.[HAMAP-Rule:MF_01396] Key component of the F(0) channel; it plays a direct role in translocation across the membrane. A homomeric c-ring of between 10-14 subunits forms the central stalk rotor element with the F(1) delta and epsilon subunits.[HAMAP-Rule:MF_01396] [[http://www.uniprot.org/uniprot/A0A073FQ32_ECOLX A0A073FQ32_ECOLX]] Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.[HAMAP-Rule:MF_01346] [[http://www.uniprot.org/uniprot/C3SL77_ECOLX C3SL77_ECOLX]] Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane.[HAMAP-Rule:MF_01393][RuleBase:RU000483] [[http://www.uniprot.org/uniprot/A0A073H3T8_ECOLX A0A073H3T8_ECOLX]] F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.[HAMAP-Rule:MF_01416] This protein is part of the stalk that links CF(0) to CF(1). It either transmits conformational changes from CF(0) to CF(1) or is implicated in proton conduction.[HAMAP-Rule:MF_01416] [[http://www.uniprot.org/uniprot/S1HQ43_ECOLX S1HQ43_ECOLX]] Produces ATP from ADP in the presence of a proton gradient across the membrane.[HAMAP-Rule:MF_00530][SAAS:SAAS00872986] [[http://www.uniprot.org/uniprot/J7RYJ3_ECOLX J7RYJ3_ECOLX]] Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.[HAMAP-Rule:MF_00815][SAAS:SAAS00725627] | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
F1Fo ATP synthase functions as a biological rotary generator that makes a major contribution to cellular energy production. It comprises two molecular motors coupled together by a central and a peripheral stalk. Proton flow through the Fo motor generates rotation of the central stalk, inducing conformational changes in the F1 motor that catalyzes ATP production. Here we present nine cryo-EM structures of E. coli ATP synthase to 3.1-3.4 A resolution, in four discrete rotational sub-states, which provide a comprehensive structural model for this widely studied bacterial molecular machine. We observe torsional flexing of the entire complex and a rotational sub-step of Fo associated with long-range conformational changes that indicates how this flexibility accommodates the mismatch between the 3- and 10-fold symmetries of the F1 and Fo motors. We also identify density likely corresponding to lipid molecules that may contribute to the rotor/stator interaction within the Fo motor. | |||
Cryo-EM structures provide insight into how E. coli F1Fo ATP synthase accommodates symmetry mismatch.,Sobti M, Walshe JL, Wu D, Ishmukhametov R, Zeng YC, Robinson CV, Berry RM, Stewart AG Nat Commun. 2020 May 26;11(1):2615. doi: 10.1038/s41467-020-16387-2. PMID:32457314<ref>PMID:32457314</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 6oqr" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Bacillus coli migula 1895]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Sobti, M]] | ||
[[Category: Stewart, A G]] | |||
[[Category: Walshe, J L]] | |||
[[Category: Atpase]] | |||
[[Category: E coli atp synthase]] | |||
[[Category: Ion channel]] | |||
[[Category: Membrane protein]] |
Revision as of 09:38, 10 June 2020
E. coli ATP Synthase ADP State 1aE. coli ATP Synthase ADP State 1a
Structural highlights
Function[A0A192CEZ8_ECOLX] Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits.[HAMAP-Rule:MF_01347] [D6IFY0_ECOLX] Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0).[HAMAP-Rule:MF_01398][SAAS:SAAS00535352] F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.[HAMAP-Rule:MF_01398][SAAS:SAAS00002149] [F4TL55_ECOLX] F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.[HAMAP-Rule:MF_01396] Key component of the F(0) channel; it plays a direct role in translocation across the membrane. A homomeric c-ring of between 10-14 subunits forms the central stalk rotor element with the F(1) delta and epsilon subunits.[HAMAP-Rule:MF_01396] [A0A073FQ32_ECOLX] Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.[HAMAP-Rule:MF_01346] [C3SL77_ECOLX] Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane.[HAMAP-Rule:MF_01393][RuleBase:RU000483] [A0A073H3T8_ECOLX] F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.[HAMAP-Rule:MF_01416] This protein is part of the stalk that links CF(0) to CF(1). It either transmits conformational changes from CF(0) to CF(1) or is implicated in proton conduction.[HAMAP-Rule:MF_01416] [S1HQ43_ECOLX] Produces ATP from ADP in the presence of a proton gradient across the membrane.[HAMAP-Rule:MF_00530][SAAS:SAAS00872986] [J7RYJ3_ECOLX] Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.[HAMAP-Rule:MF_00815][SAAS:SAAS00725627] Publication Abstract from PubMedF1Fo ATP synthase functions as a biological rotary generator that makes a major contribution to cellular energy production. It comprises two molecular motors coupled together by a central and a peripheral stalk. Proton flow through the Fo motor generates rotation of the central stalk, inducing conformational changes in the F1 motor that catalyzes ATP production. Here we present nine cryo-EM structures of E. coli ATP synthase to 3.1-3.4 A resolution, in four discrete rotational sub-states, which provide a comprehensive structural model for this widely studied bacterial molecular machine. We observe torsional flexing of the entire complex and a rotational sub-step of Fo associated with long-range conformational changes that indicates how this flexibility accommodates the mismatch between the 3- and 10-fold symmetries of the F1 and Fo motors. We also identify density likely corresponding to lipid molecules that may contribute to the rotor/stator interaction within the Fo motor. Cryo-EM structures provide insight into how E. coli F1Fo ATP synthase accommodates symmetry mismatch.,Sobti M, Walshe JL, Wu D, Ishmukhametov R, Zeng YC, Robinson CV, Berry RM, Stewart AG Nat Commun. 2020 May 26;11(1):2615. doi: 10.1038/s41467-020-16387-2. PMID:32457314[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|