1bcj: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image:1bcj.gif|left|200px]] | [[Image:1bcj.gif|left|200px]] | ||
<!-- | |||
The line below this paragraph, containing "STRUCTURE_1bcj", creates the "Structure Box" on the page. | |||
You may change the PDB parameter (which sets the PDB file loaded into the applet) | |||
or the SCENE parameter (which sets the initial scene displayed when the page is loaded), | |||
| | or leave the SCENE parameter empty for the default display. | ||
| | --> | ||
{{STRUCTURE_1bcj| PDB=1bcj | SCENE= }} | |||
}} | |||
'''MANNOSE-BINDING PROTEIN-A MUTANT (QPDWGHV) COMPLEXED WITH N-ACETYL-D-GALACTOSAMINE''' | '''MANNOSE-BINDING PROTEIN-A MUTANT (QPDWGHV) COMPLEXED WITH N-ACETYL-D-GALACTOSAMINE''' | ||
Line 27: | Line 24: | ||
[[Category: Kolatkar, A R.]] | [[Category: Kolatkar, A R.]] | ||
[[Category: Weis, W I.]] | [[Category: Weis, W I.]] | ||
[[Category: | [[Category: C-type lectin]] | ||
[[Category: | [[Category: Calcium-binding protein]] | ||
[[Category: | [[Category: Lectin]] | ||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May 2 11:20:32 2008'' | |||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on |
Revision as of 11:20, 2 May 2008
MANNOSE-BINDING PROTEIN-A MUTANT (QPDWGHV) COMPLEXED WITH N-ACETYL-D-GALACTOSAMINE
OverviewOverview
The mammalian hepatic asialoglycoprotein receptor, a member of the C-type animal lectin family, displays preferential binding to N-acetylgalactosamine compared with galactose. The structural basis for selective binding to N-acetylgalactosamine has been investigated. Regions of the carbohydrate-recognition domain of the receptor believed to be important in preferential binding to N-acetylgalactosamine have been inserted into the homologous carbohydrate-recognition domain of a mannose-binding protein mutant that was previously altered to bind galactose. Introduction of a single histidine residue corresponding to residue 256 of the hepatic asialoglycoprotein receptor was found to cause a 14-fold increase in the relative affinity for N-acetylgalactosamine compared with galactose. The relative ability of various acyl derivatives of galactosamine to compete for binding to this modified carbohydrate-recognition domain suggest that it is a good model for the natural N-acetylgalactosamine binding site of the asialoglycoprotein receptor. Crystallographic analysis of this mutant carbohydrate-recognition domain in complex with N-acetylgalactosamine reveals a direct interaction between the inserted histidine residue and the methyl group of the N-acetyl substituent of the sugar. Evidence for the role of the side chain at position 208 of the receptor in positioning this key histidine residue was obtained from structural analysis and mutagenesis experiments. The corresponding serine residue in the modified carbohydrate-recognition domain of mannose-binding protein forms a hydrogen bond to the imidazole side chain. When this serine residue is changed to valine, loss in selectivity for N-acetylgalactosamine is observed. The structure of this mutant reveals that the beta-branched valine side chain interacts directly with the histidine side chain, resulting in an altered imidazole ring orientation.
About this StructureAbout this Structure
1BCJ is a Single protein structure of sequence from Rattus norvegicus. Full crystallographic information is available from OCA.
ReferenceReference
Mechanism of N-acetylgalactosamine binding to a C-type animal lectin carbohydrate-recognition domain., Kolatkar AR, Leung AK, Isecke R, Brossmer R, Drickamer K, Weis WI, J Biol Chem. 1998 Jul 31;273(31):19502-8. PMID:9677372 Page seeded by OCA on Fri May 2 11:20:32 2008