Nucleoside triphosphatase: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
== Structural highlights == | == Structural highlights == | ||
The 3D structure of the complex between NTPase 2 and the ATP analog AMPPNP shows the NTPase structure composed of two domains. Domain I contains the N-terminal and C-terminal and domain II the core residues. The structure contains 7 Cys-Cys bonds one of which located between domain I and II and reaching the diametrically positioned monomer was found by mutational analysis to be responsible for activation. The ATP analog - AMPPNP - is located in a cleft and forms interactions with domain I and domain II<ref>PMID:22130673</ref>. | <snapshot name='84/844927/Cv/2'>green link</snapshot>. The 3D structure of the complex between NTPase 2 and the ATP analog AMPPNP shows the NTPase structure composed of two domains. Domain I contains the N-terminal and C-terminal and domain II the core residues. The structure contains 7 Cys-Cys bonds one of which located between domain I and II and reaching the diametrically positioned monomer was found by mutational analysis to be responsible for activation. The ATP analog - AMPPNP - is located in a cleft and forms interactions with domain I and domain II<ref>PMID:22130673</ref>. | ||
</SX> | </SX> |
Revision as of 13:56, 12 May 2020
|
3D structures of nucleoside triphosphatase3D structures of nucleoside triphosphatase
Updated on 12-May-2020
ReferencesReferences
- ↑ Krug U, Totzauer R, Zebisch M, Strater N. The ATP/ADP Substrate Specificity Switch between Toxoplasma gondii NTPDase1 and NTPDase3 is Caused by an Altered Mode of Binding of the Substrate Base. Chembiochem. 2013 Oct 2. doi: 10.1002/cbic.201300441. PMID:24115522 doi:http://dx.doi.org/10.1002/cbic.201300441
- ↑ Roszek K, Czarnecka J. Is Ecto-nucleoside Triphosphate Diphosphohydrolase (NTPDase)-based Therapy of Central Nervous System Disorders Possible? Mini Rev Med Chem. 2015;15(1):5-20. doi: 10.2174/1389557515666150219114416. PMID:25694082 doi:http://dx.doi.org/10.2174/1389557515666150219114416
- ↑ Krug U, Zebisch M, Krauss M, Strater N. Structural insight into the activation mechanism of Toxoplasma gondii nucleoside triphosphate diphosphohydrolases by disulfide reduction. J Biol Chem. 2011 Nov 30. PMID:22130673 doi:10.1074/jbc.M111.294348