5dqv: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==The crystal structure of Bacillus subtilis YpgQ== | ==The crystal structure of Bacillus subtilis YpgQ== | ||
<StructureSection load='5dqv' size='340' side='right' caption='[[5dqv]], [[Resolution|resolution]] 2.00Å' scene=''> | <StructureSection load='5dqv' size='340' side='right'caption='[[5dqv]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5dqv]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5DQV OCA]. For a <b>guided tour on the structure components</b> use [http:// | <table><tr><td colspan='2'>[[5dqv]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"vibrio_subtilis"_ehrenberg_1835 "vibrio subtilis" ehrenberg 1835]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5DQV OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5DQV FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5dqw|5dqw]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5dqw|5dqw]]</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http:// | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">BIS30_00575 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 "Vibrio subtilis" Ehrenberg 1835])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5dqv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5dqv OCA], [http://pdbe.org/5dqv PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5dqv RCSB], [http://www.ebi.ac.uk/pdbsum/5dqv PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5dqv ProSAT]</span></td></tr> | |||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 21: | Line 22: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Vibrio subtilis ehrenberg 1835]] | |||
[[Category: Large Structures]] | |||
[[Category: Jeon, Y J]] | [[Category: Jeon, Y J]] | ||
[[Category: Song, W S]] | [[Category: Song, W S]] |
Revision as of 11:14, 8 April 2020
The crystal structure of Bacillus subtilis YpgQThe crystal structure of Bacillus subtilis YpgQ
Structural highlights
Publication Abstract from PubMedThe optimal balance of cellular nucleotides and the efficient elimination of non-canonical nucleotides are critical to avoiding erroneous mutation during DNA replication. One such mechanism involves the degradation of excessive or abnormal nucleotides by nucleotide-hydrolyzing enzymes. YpgQ contains the histidine-aspartate (HD) domain that is involved in the hydrolysis of nucleotides or nucleic acids, but the enzymatic activity and substrate specificity of YpgQ have never been characterized. Here, we unravel the catalytic activity and structural features of YpgQ to report the first Mn2+-dependent pyrophosphohydrolase that hydrolyzes (deoxy)ribonucleoside triphosphate [(d)NTP] to (deoxy)ribonucleoside monophosphate and pyrophosphate using the HD domain. YpgQ from Bacillus subtilis (bsYpgQ) displays a helical structure and assembles into a unique dimeric architecture that has not been observed in other HD domain-containing proteins. Each bsYpgQ monomer accommodates a metal ion and a nucleotide substrate in a cavity located between the N- and C-terminal lobes. The metal cofactor is coordinated by the canonical residues of the HD domain, namely, two histidine residues and two aspartate residues, and is positioned in close proximity to the beta-phosphate group of the nucleotide, allowing us to propose a nucleophilic attack mechanism for the nucleotide hydrolysis reaction. YpgQ enzymes from other bacterial species also catalyze pyrophosphohydrolysis but exhibit different substrate specificity. Comparative structural and mutational studies demonstrated that residues outside the major substrate-binding site of bsYpgQ are responsible for the species-specific substrate preference. Taken together, our structural and biochemical analyses highlight the substrate-recognition mode and catalysis mechanism of YpgQ in pyrophosphohydrolysis. Structural and biochemical characterization of bacterial YpgQ protein reveals a metal-dependent nucleotide pyrophosphohydrolase.,Jeon YJ, Park SC, Song WS, Kim OH, Oh BC, Yoon SI J Struct Biol. 2016 Apr 7. pii: S1047-8477(16)30061-2. doi:, 10.1016/j.jsb.2016.04.002. PMID:27062940[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|