5def: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:


==Crystal structure of B*27:04 complex bound to the pVIPR peptide==
==Crystal structure of B*27:04 complex bound to the pVIPR peptide==
<StructureSection load='5def' size='340' side='right' caption='[[5def]], [[Resolution|resolution]] 1.60&Aring;' scene=''>
<StructureSection load='5def' size='340' side='right'caption='[[5def]], [[Resolution|resolution]] 1.60&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5def]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5DEF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5DEF FirstGlance]. <br>
<table><tr><td colspan='2'>[[5def]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5DEF OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5DEF FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1of2|1of2]], [[1ogt|1ogt]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1of2|1of2]], [[1ogt|1ogt]]</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5def FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5def OCA], [http://pdbe.org/5def PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5def RCSB], [http://www.ebi.ac.uk/pdbsum/5def PDBsum]</span></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HLA-B ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), B2M, CDABP0092, HDCMA22P ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5def FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5def OCA], [http://pdbe.org/5def PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5def RCSB], [http://www.ebi.ac.uk/pdbsum/5def PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5def ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
Line 21: Line 22:
</div>
</div>
<div class="pdbe-citations 5def" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 5def" style="background-color:#fffaf0;"></div>
==See Also==
*[[Beta-2 microglobulin 3D structures|Beta-2 microglobulin 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Large Structures]]
[[Category: Fabian, H]]
[[Category: Fabian, H]]
[[Category: Hee, C S]]
[[Category: Hee, C S]]

Revision as of 11:01, 8 April 2020

Crystal structure of B*27:04 complex bound to the pVIPR peptideCrystal structure of B*27:04 complex bound to the pVIPR peptide

Structural highlights

5def is a 3 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Gene:HLA-B (HUMAN), B2M, CDABP0092, HDCMA22P (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[B2MG_HUMAN] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:241600]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.[1] Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

Function

[B2MG_HUMAN] Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system.

Publication Abstract from PubMed

OBJECTIVE: Dissimilarities in antigen processing and presentation are known to contribute to the differential association of HLA-B*27 subtypes with the inflammatory rheumatic disease ankylosing spondylitis (AS). In support of this contention, previous X-ray crystallographic data showed that peptides can be displayed by almost identical HLA-B*27 molecules in a subtype-dependent manner, allowing cytotoxic T lymphocytes to distinguish between these subtypes. For example, the human self-peptide pVIPR (RRKWRRWHL) is displayed in a single conformation by B*27:09 (not AS-associated), while B*27:05 (AS-associated) presents the peptide in a dual binding mode. In addition, differences in conformational flexibility between these subtypes might affect their stability or antigen presentation capability. We investigated B*27:04 and B*27:06, another pair of minimally distinct HLA-B*27 subtypes, to assess whether dual peptide conformations or structural dynamics could play a role in the initiation of AS. METHODS: Using X-ray crystallography, we solved the structures of pVIPR-B*27:04 and pVIPR-B*27:06 and employed isotope-edited infrared (IR) spectroscopy to probe the dynamics of these HLA-B*27 subtypes. RESULTS: As opposed to B*27:05 and B*27:09, B*27:04 (AS-associated) displays pVIPR conventionally and B*27:06 (not AS-associated) presents the peptide in a dual conformation. On the other hand, the comparison of the four HLA-B*27 subtypes using IR spectroscopy revealed that B*27:04 and B*27:05 exhibit elevated molecular dynamics when compared to the non-associated subtypes B*27:06 and B*27:09. CONCLUSION: Our results demonstrate that an increase in conformational flexibility characterizes the disease-associated subtypes B*27:04 and B*27:05. This article is protected by copyright. All rights reserved.

Increased conformational flexibility characterizes HLA-B*27 subtypes associated with ankylosing spondylitis.,Loll B, Fabian H, Huser H, Hee CS, Ziegler A, Uchanska-Ziegler B, Ziegler A Arthritis Rheumatol. 2016 Jan 8. doi: 10.1002/art.39567. PMID:26748477[15]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wani MA, Haynes LD, Kim J, Bronson CL, Chaudhury C, Mohanty S, Waldmann TA, Robinson JM, Anderson CL. Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5084-9. Epub 2006 Mar 20. PMID:16549777 doi:10.1073/pnas.0600548103
  2. Gorevic PD, Munoz PC, Casey TT, DiRaimondo CR, Stone WJ, Prelli FC, Rodrigues MM, Poulik MD, Frangione B. Polymerization of intact beta 2-microglobulin in tissue causes amyloidosis in patients on chronic hemodialysis. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7908-12. PMID:3532124
  3. Argiles A, Derancourt J, Jauregui-Adell J, Mion C, Demaille JG. Biochemical characterization of serum and urinary beta 2 microglobulin in end-stage renal disease patients. Nephrol Dial Transplant. 1992;7(11):1106-10. PMID:1336137
  4. Momoi T, Suzuki M, Titani K, Hisanaga S, Ogawa H, Saito A. Amino acid sequence of a modified beta 2-microglobulin in renal failure patient urine and long-term dialysis patient blood. Clin Chim Acta. 1995 May 15;236(2):135-44. PMID:7554280
  5. Cunningham BA, Wang JL, Berggard I, Peterson PA. The complete amino acid sequence of beta 2-microglobulin. Biochemistry. 1973 Nov 20;12(24):4811-22. PMID:4586824
  6. Haag-Weber M, Mai B, Horl WH. Isolation of a granulocyte inhibitory protein from uraemic patients with homology of beta 2-microglobulin. Nephrol Dial Transplant. 1994;9(4):382-8. PMID:8084451
  7. Trinh CH, Smith DP, Kalverda AP, Phillips SE, Radford SE. Crystal structure of monomeric human beta-2-microglobulin reveals clues to its amyloidogenic properties. Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9771-6. Epub 2002 Jul 15. PMID:12119416 doi:10.1073/pnas.152337399
  8. Stewart-Jones GB, McMichael AJ, Bell JI, Stuart DI, Jones EY. A structural basis for immunodominant human T cell receptor recognition. Nat Immunol. 2003 Jul;4(7):657-63. Epub 2003 Jun 8. PMID:12796775 doi:10.1038/ni942
  9. Kihara M, Chatani E, Iwata K, Yamamoto K, Matsuura T, Nakagawa A, Naiki H, Goto Y. Conformation of amyloid fibrils of beta2-microglobulin probed by tryptophan mutagenesis. J Biol Chem. 2006 Oct 13;281(41):31061-9. Epub 2006 Aug 10. PMID:16901902 doi:10.1074/jbc.M605358200
  10. Eakin CM, Berman AJ, Miranker AD. A native to amyloidogenic transition regulated by a backbone trigger. Nat Struct Mol Biol. 2006 Mar;13(3):202-8. Epub 2006 Feb 19. PMID:16491088 doi:10.1038/nsmb1068
  11. Iwata K, Matsuura T, Sakurai K, Nakagawa A, Goto Y. High-resolution crystal structure of beta2-microglobulin formed at pH 7.0. J Biochem. 2007 Sep;142(3):413-9. Epub 2007 Jul 23. PMID:17646174 doi:10.1093/jb/mvm148
  12. Ricagno S, Colombo M, de Rosa M, Sangiovanni E, Giorgetti S, Raimondi S, Bellotti V, Bolognesi M. DE loop mutations affect beta2-microglobulin stability and amyloid aggregation. Biochem Biophys Res Commun. 2008 Dec 5;377(1):146-50. Epub 2008 Oct 1. PMID:18835253 doi:S0006-291X(08)01866-4
  13. Esposito G, Ricagno S, Corazza A, Rennella E, Gumral D, Mimmi MC, Betto E, Pucillo CE, Fogolari F, Viglino P, Raimondi S, Giorgetti S, Bolognesi B, Merlini G, Stoppini M, Bolognesi M, Bellotti V. The controlling roles of Trp60 and Trp95 in beta2-microglobulin function, folding and amyloid aggregation properties. J Mol Biol. 2008 May 9;378(4):887-97. Epub 2008 Mar 8. PMID:18395224 doi:10.1016/j.jmb.2008.03.002
  14. Ricagno S, Raimondi S, Giorgetti S, Bellotti V, Bolognesi M. Human beta-2 microglobulin W60V mutant structure: Implications for stability and amyloid aggregation. Biochem Biophys Res Commun. 2009 Mar 13;380(3):543-7. Epub 2009 Jan 25. PMID:19284997 doi:10.1016/j.bbrc.2009.01.116
  15. Loll B, Fabian H, Huser H, Hee CS, Ziegler A, Uchanska-Ziegler B, Ziegler A. Increased conformational flexibility characterizes HLA-B*27 subtypes associated with ankylosing spondylitis. Arthritis Rheumatol. 2016 Jan 8. doi: 10.1002/art.39567. PMID:26748477 doi:http://dx.doi.org/10.1002/art.39567

5def, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA