2duf: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==crystal structure of a green fluorescent protein variant S65T/H148D at pH 5.6== | ==crystal structure of a green fluorescent protein variant S65T/H148D at pH 5.6== | ||
<StructureSection load='2duf' size='340' side='right' caption='[[2duf]], [[Resolution|resolution]] 1.50Å' scene=''> | <StructureSection load='2duf' size='340' side='right'caption='[[2duf]], [[Resolution|resolution]] 1.50Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2duf]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Aeqvi Aeqvi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2DUF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2DUF FirstGlance]. <br> | <table><tr><td colspan='2'>[[2duf]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Aeqvi Aeqvi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2DUF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2DUF FirstGlance]. <br> | ||
Line 31: | Line 31: | ||
==See Also== | ==See Also== | ||
*[[Green Fluorescent Protein|Green Fluorescent Protein]] | *[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 37: | Line 37: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Aeqvi]] | [[Category: Aeqvi]] | ||
[[Category: Large Structures]] | |||
[[Category: Remington, S J]] | [[Category: Remington, S J]] | ||
[[Category: Shu, X]] | [[Category: Shu, X]] |
Revision as of 11:20, 11 March 2020
crystal structure of a green fluorescent protein variant S65T/H148D at pH 5.6crystal structure of a green fluorescent protein variant S65T/H148D at pH 5.6
Structural highlights
Function[GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedWild type green fluorescent protein (wt-GFP) and the variant S65T/H148D each exhibit two absorption bands, A and B, which are associated with the protonated and deprotonated chromophores, respectively. Excitation of either band leads to green emission. In wt-GFP, excitation of band A ( approximately 395 nm) leads to green emission with a rise time of 10-15 ps, due to excited-state proton transfer (ESPT) from the chromophore hydroxyl group to an acceptor. This process produces an anionic excited-state intermediate I* that subsequently emits a green photon. In the variant S65T/H148D, the A band absorbance maximum is red-shifted to approximately 415 nm, and as detailed in the accompanying papers, when the A band is excited, green fluorescence appears with a rise time shorter than the instrument time resolution ( approximately 170 fs). On the basis of the steady-state spectroscopy and high-resolution crystal structures of several variants described herein, it is proposed that in S65T/H148D, the red shift of absorption band A and the ultrafast appearance of green fluorescence upon excitation of band A are due to a very short (<or=2.4 A), and possibly low-barrier, hydrogen bond between the chromophore hydroxyl and introduced Asp148. Ultrafast excited-state dynamics in the green fluorescent protein variant S65T/H148D. 1. Mutagenesis and structural studies.,Shu X, Kallio K, Shi X, Abbyad P, Kanchanawong P, Childs W, Boxer SG, Remington SJ Biochemistry. 2007 Oct 30;46(43):12005-13. Epub 2007 Oct 6. PMID:17918959[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|