6v92: Difference between revisions

m Protected "6v92" [edit=sysop:move=sysop]
No edit summary
Line 1: Line 1:
'''Unreleased structure'''


The entry 6v92 is ON HOLD
==RSC-NCP==
<SX load='6v92' size='340' side='right' viewer='molstar' caption='[[6v92]], [[Resolution|resolution]] 20.00&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[6v92]] is a 35 chain structure with sequence from [http://en.wikipedia.org/wiki/Baker's_yeast Baker's yeast]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6V92 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6V92 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=UNK:UNKNOWN'>UNK</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">H3C1, H3FA, HIST1H3A, H3C2, H3FL, HIST1H3B, H3C3, H3FC HIST1H3C, H3C4, H3FB, HIST1H3D, H3C6, H3FD, HIST1H3E, H3C7, H3FI, HIST1H3F, H3C8, H3FH, HIST1H3G, H3C10, H3FK, HIST1H3H, H3C11, H3FF, HIST1H3I, H3C12, H3FJ, HIST1H3J ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), HIST1H4A, H4/A, H4FA, HIST1H4B, H4/I, H4FI, HIST1H4C, H4/G, H4FG, HIST1H4D, H4/B, H4FB, HIST1H4E, H4/J, H4FJ, HIST1H4F, H4/C, H4FC, HIST1H4H, H4/H, H4FH, HIST1H4I, H4/M, H4FM, HIST1H4J, H4/E, H4FE, HIST1H4K, H4/D, H4FD, HIST1H4L, H4/K, H4FK, HIST2H4A, H4/N, H4F2, H4FN, HIST2H4, HIST2H4B, H4/O, H4FO, HIST4H4 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), HIST1H2AB, H2AFM, HIST1H2AE, H2AFA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), H2BC12, H2BFT, HIRIP1, HIST1H2BK ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA_helicase DNA helicase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.4.12 3.6.4.12] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6v92 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6v92 OCA], [http://pdbe.org/6v92 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6v92 RCSB], [http://www.ebi.ac.uk/pdbsum/6v92 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6v92 ProSAT]</span></td></tr>
</table>
== Function ==
[[http://www.uniprot.org/uniprot/RSC8_YEAST RSC8_YEAST]] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is essential for mitotic growth and for repression of CHA1 expression.<ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:8980231</ref> <ref>PMID:9121424</ref>  [[http://www.uniprot.org/uniprot/RSC7_YEAST RSC7_YEAST]] Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. Together with HTL1, LDB7, RSC3, RSC30 components, defines a fungal-specific module within the RSC complex that plays a role in many cellular functions including the maintenance of cell wall integrity. Acidic protein important for nuclear protein localization.<ref>PMID:16204215</ref>  [[http://www.uniprot.org/uniprot/H2B1K_HUMAN H2B1K_HUMAN]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.  Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid. [[http://www.uniprot.org/uniprot/STH1_YEAST STH1_YEAST]] Catalytic component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is the essential ATPase of the complex. It is a DNA translocase capable of nucleosome remodeling. Required for full expression of early meiotic genes. Essential for mitotic growth and repression of CHA1 expression. Also involved in G2 phase control.<ref>PMID:10025404</ref> <ref>PMID:10320476</ref> <ref>PMID:10329629</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:8980231</ref> <ref>PMID:9799253</ref>  [[http://www.uniprot.org/uniprot/ARP7_YEAST ARP7_YEAST]] Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is involved in transcriptional regulation. Heterodimer of ARP7 and ARP9 functions with HMG box proteins to facilitate proper chromatin architecture. Heterodimer formation is necessary for assembly into RSC complex. Part of the SWI/SNF complex, an ATP-dependent chromatin remodeling complex, is required for the positive and negative regulation of gene expression of a large number of genes. It changes chromatin structure by altering DNA-histone contacts within a nucleosome, leading eventually to a change in nucleosome position, thus facilitating or repressing binding of gene-specific transcription factors.<ref>PMID:9844636</ref> <ref>PMID:8980231</ref> <ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12183366</ref> <ref>PMID:12072455</ref> <ref>PMID:12805231</ref> <ref>PMID:12697820</ref>  [[http://www.uniprot.org/uniprot/RSC30_YEAST RSC30_YEAST]] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is required for transcription of ribosomal protein genes and genes involved in the integrity of the cell wall. Together with HTL1, LDB7, NPL6, RSC3 components, defines a fungal-specific module within the RSC complex that plays a role in many cellular functions including the maintenance of cell wall integrity.<ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:11336698</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:16204215</ref> <ref>PMID:8980231</ref>  [[http://www.uniprot.org/uniprot/RSC9_YEAST RSC9_YEAST]] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit plays a role in transcriptional response to stress. It is involved in both repression and activation of mRNAs regulated by the target of rapamycin (TOR) kinases, and in the synthesis of rRNA.<ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:11931764</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:8980231</ref>  [[http://www.uniprot.org/uniprot/LDB7_YEAST LDB7_YEAST]] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. Together with HTL1, NPL6, RSC3, RSC30 components, defines a fungal-specific module within the RSC complex that plays a role in many cellular functions including the maintenance of cell wall integrity. May be involved in the transfer of mannosylphosphate (MP) groups into N-linked oligosaccharides.<ref>PMID:14587103</ref> <ref>PMID:16204215</ref>  [[http://www.uniprot.org/uniprot/ARP9_YEAST ARP9_YEAST]] Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is involved in transcriptional regulation. Heterodimer of ARP9 and ARP7 functions with HMG box proteins to facilitate proper chromatin architecture. Heterodimer formation is necessary for assembly into RSC complex. Part of the SWI/SNF complex, an ATP-dependent chromatin remodeling complex, is required for the positive and negative regulation of gene expression of a large number of genes. It changes chromatin structure by altering DNA-histone contacts within a nucleosome, leading eventually to a change in nucleosome position, thus facilitating or repressing binding of gene-specific transcription factors.<ref>PMID:9844636</ref> <ref>PMID:8980231</ref> <ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12183366</ref> <ref>PMID:12072455</ref> <ref>PMID:12805231</ref> <ref>PMID:12697820</ref>  [[http://www.uniprot.org/uniprot/RSC3_YEAST RSC3_YEAST]] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is required for transcription of ribosomal protein genes and genes involved in the integrity of the cell wall, and also for proper metaphase progression. Together with HTL1, LDB7, NPL6, RSC30 components, defines a fungal-specific module within the RSC complex that plays a role in many cellular functions including the maintenance of cell wall integrity.<ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:11336698</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:16204215</ref> <ref>PMID:8980231</ref>  [[http://www.uniprot.org/uniprot/RSC6_YEAST RSC6_YEAST]] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is essential for mitotic growth and suppresses formamide sensitivity of the RSC8 mutants.<ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:8980231</ref> <ref>PMID:9685490</ref>  [[http://www.uniprot.org/uniprot/RSC58_YEAST RSC58_YEAST]] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton.<ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:8980231</ref>  [[http://www.uniprot.org/uniprot/SFH1_YEAST SFH1_YEAST]] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is essential for mitotic growth and required for cell cycle progression.<ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:8980231</ref> <ref>PMID:9154831</ref>  [[http://www.uniprot.org/uniprot/RSC2_YEAST RSC2_YEAST]] Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is involved in meiotic sporulation through regulating IME2 expression, and is also essential for 2-micron plasmid maintenance and for normal REP1 protein localization.<ref>PMID:12024034</ref> <ref>PMID:8980231</ref> <ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12702296</ref> <ref>PMID:12183366</ref> <ref>PMID:12072455</ref> <ref>PMID:12697820</ref>  [[http://www.uniprot.org/uniprot/RT102_YEAST RT102_YEAST]] Probable component of the chromatin structure-remodeling complex (RSC) which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. Probable component of the SWI/SNF complex, an ATP-dependent chromatin-remodeling complex, is required for the positive and negative regulation of gene expression of a large number of genes. It changes chromatin structure by altering DNA-histone contacts within a nucleosome, leading eventually to a change in nucleosome position, thus facilitating or repressing binding of gene-specific transcription factors. [[http://www.uniprot.org/uniprot/RSC4_YEAST RSC4_YEAST]] Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton.<ref>PMID:8980231</ref> <ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12183366</ref> <ref>PMID:12072455</ref> <ref>PMID:12697820</ref>  [[http://www.uniprot.org/uniprot/HTL1_YEAST HTL1_YEAST]] Required for cell cycle progression through G2/M transition at temperatures higher than 33 degrees Celsius. Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. When associated with the RSC complex, may act coordinately with PKC1 to regulate G2/M transition. Together with LDB7, NPL6, RSC3, RSC30 components, defines a fungal-specific module within the RSC complex that plays a role in many cellular functions including the maintenance of cell wall integrity.<ref>PMID:12417720</ref> <ref>PMID:12684875</ref> <ref>PMID:16204215</ref> 
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Eukaryotic DNA is packaged into nucleosome arrays, which are repositioned by chromatin remodeling complexes to control DNA accessibility. The Saccharomyces cerevisiae RSC (Remodeling the Structure of Chromatin) complex, a member of the SWI/SNF chromatin remodeler family, plays critical roles in genome maintenance, transcription, and DNA repair. Here, we report cryo-electron microscopy (cryo-EM) and crosslinking mass spectrometry (CLMS) studies of yeast RSC complex and show that RSC is composed of a rigid tripartite core and two flexible lobes. The core structure is scaffolded by an asymmetric Rsc8 dimer and built with the evolutionarily conserved subunits Sfh1, Rsc6, Rsc9 and Sth1. The flexible ATPase lobe, composed of helicase subunit Sth1, Arp7, Arp9 and Rtt102, is anchored to this core by the N-terminus of Sth1. Our cryo-EM analysis of RSC bound to a nucleosome core particle shows that in addition to the expected nucleosome-Sth1 interactions, RSC engages histones and nucleosomal DNA through one arm of the core structure, composed of the Rsc8 SWIRM domains, Sfh1 and Npl6. Our findings provide structural insights into the conserved assembly process for all members of the SWI/SNF family of remodelers, and illustrate how RSC selects, engages, and remodels nucleosomes.


Authors:  
Architecture of the chromatin remodeler RSC and insights into its nucleosome engagement.,Patel AB, Moore CM, Greber BJ, Luo J, Zukin SA, Ranish J, Nogales E Elife. 2019 Dec 30;8. pii: 54449. doi: 10.7554/eLife.54449. PMID:31886770<ref>PMID:31886770</ref>


Description:  
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
<div class="pdbe-citations 6v92" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</SX>
[[Category: Baker's yeast]]
[[Category: DNA helicase]]
[[Category: Large Structures]]
[[Category: Greber, B J]]
[[Category: Moore, C M]]
[[Category: Nogales, E]]
[[Category: Patel, A B]]
[[Category: Chromatin remodeler]]
[[Category: Gene regulation]]
[[Category: Gene regulation-dna complex]]
[[Category: Rsc]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA