4ym7: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Large structure}}
 
==RNA polymerase I structure with an alternative dimer hinge==
==RNA polymerase I structure with an alternative dimer hinge==
<StructureSection load='4ym7' size='340' side='right' caption='[[4ym7]], [[Resolution|resolution]] 5.50&Aring;' scene=''>
<StructureSection load='4ym7' size='340' side='right'caption='[[4ym7]], [[Resolution|resolution]] 5.50&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4ym7]] is a 90 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4YM7 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4YM7 FirstGlance]. <br>
<table><tr><td colspan='2'>[[4ym7]] is a 90 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4YM7 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4YM7 FirstGlance]. <br>
Line 8: Line 8:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ym7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ym7 OCA], [http://pdbe.org/4ym7 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4ym7 RCSB], [http://www.ebi.ac.uk/pdbsum/4ym7 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4ym7 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ym7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ym7 OCA], [http://pdbe.org/4ym7 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4ym7 RCSB], [http://www.ebi.ac.uk/pdbsum/4ym7 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4ym7 ProSAT]</span></td></tr>
</table>
</table>
{{Large structure}}
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/RPAB2_YEAST RPAB2_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RPB6 is part of the clamp element and togther with parts of RPB1 and RPB2 forms a pocket to which the RPB4-RPB7 subcomplex binds (By similarity). [[http://www.uniprot.org/uniprot/RPAC2_YEAST RPAC2_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common core component of RNA polymerases I and III which synthesize ribosomal RNA precursors and small RNAs, such as 5S rRNA and tRNAs, respectively. [[http://www.uniprot.org/uniprot/RPAC1_YEAST RPAC1_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I and III which synthesize ribosomal RNA precursors and small RNAs, such as 5S rRNA and tRNAs, respectively. RPAC1 is part of the Pol core element with the central large cleft and probably a clamp element that moves to open and close the cleft (By similarity). [[http://www.uniprot.org/uniprot/RPA43_YEAST RPA43_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. Through its association with RRN3 is involved in recruitment of Pol I to rDNA promoters. In vitro, the A13-A43 subcomplex binds single-stranded RNA.<ref>PMID:11032814</ref> <ref>PMID:12888498</ref>  [[http://www.uniprot.org/uniprot/RPA12_YEAST RPA12_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. Involved in transcriptional termination. Involved in recruitment of RPA49 to Pol I.<ref>PMID:15073335</ref>  [[http://www.uniprot.org/uniprot/RPA2_YEAST RPA2_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Second largest core component of RNA polymerase I which synthesizes ribosomal RNA precursors. Proposed to contribute to the polymerase catalytic activity and forms the polymerase active center together with the largest subunit. Pol I is composed of mobile elements and RPA2 is part of the core element with the central large cleft and probably a clamp element that moves to open and close the cleft (By similarity). [[http://www.uniprot.org/uniprot/RPAB4_YEAST RPAB4_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pols are composed of mobile elements that move relative to each other. In Pol II, the core element with the central large cleft comprises RPB3, RBP10, RPB11, RPB12 and regions of RPB1 and RPB2 forming the active center. [[http://www.uniprot.org/uniprot/RPA34_YEAST RPA34_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors.<ref>PMID:9121426</ref>  [[http://www.uniprot.org/uniprot/RPAB3_YEAST RPAB3_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. [[http://www.uniprot.org/uniprot/RPA1_YEAST RPA1_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic core component of RNA polymerase I which synthesizes ribosomal RNA precursors. Forms the polymerase active center together with the second largest subunit. A single stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol I. A bridging helix emanates from RPA1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol I by acting as a ratchet that moves the RNA-DNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition (By similarity). [[http://www.uniprot.org/uniprot/RPA14_YEAST RPA14_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. A14 seems to play a role in the stability of subunits ABC23 and A43. In vitro, the A14-A43 subcomplex binds single-stranded RNA.<ref>PMID:12888498</ref>  [[http://www.uniprot.org/uniprot/RPAB5_YEAST RPAB5_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RBP10 is part of the core element with the central large cleft. [[http://www.uniprot.org/uniprot/RPA49_YEAST RPA49_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors.  A49 is easily dissociated from the rest of pol A (pol I), producing the form A*, which shows impaired transcriptional activity and increased sensitivity to alpha-amanitin. The function of A49 might be linked to the RNase H activity that was found associated with this subunit. [[http://www.uniprot.org/uniprot/RPAB1_YEAST RPAB1_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RPB5 is part of the lower jaw surrounding the central large cleft and thought to grab the incoming DNA template. Seems to be the major component in this process (By similarity).  
[[http://www.uniprot.org/uniprot/RPAB2_YEAST RPAB2_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RPB6 is part of the clamp element and togther with parts of RPB1 and RPB2 forms a pocket to which the RPB4-RPB7 subcomplex binds (By similarity). [[http://www.uniprot.org/uniprot/RPAC2_YEAST RPAC2_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common core component of RNA polymerases I and III which synthesize ribosomal RNA precursors and small RNAs, such as 5S rRNA and tRNAs, respectively. [[http://www.uniprot.org/uniprot/RPAC1_YEAST RPAC1_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I and III which synthesize ribosomal RNA precursors and small RNAs, such as 5S rRNA and tRNAs, respectively. RPAC1 is part of the Pol core element with the central large cleft and probably a clamp element that moves to open and close the cleft (By similarity). [[http://www.uniprot.org/uniprot/RPA43_YEAST RPA43_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. Through its association with RRN3 is involved in recruitment of Pol I to rDNA promoters. In vitro, the A13-A43 subcomplex binds single-stranded RNA.<ref>PMID:11032814</ref> <ref>PMID:12888498</ref>  [[http://www.uniprot.org/uniprot/RPA12_YEAST RPA12_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. Involved in transcriptional termination. Involved in recruitment of RPA49 to Pol I.<ref>PMID:15073335</ref>  [[http://www.uniprot.org/uniprot/RPA2_YEAST RPA2_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Second largest core component of RNA polymerase I which synthesizes ribosomal RNA precursors. Proposed to contribute to the polymerase catalytic activity and forms the polymerase active center together with the largest subunit. Pol I is composed of mobile elements and RPA2 is part of the core element with the central large cleft and probably a clamp element that moves to open and close the cleft (By similarity). [[http://www.uniprot.org/uniprot/RPAB4_YEAST RPAB4_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pols are composed of mobile elements that move relative to each other. In Pol II, the core element with the central large cleft comprises RPB3, RBP10, RPB11, RPB12 and regions of RPB1 and RPB2 forming the active center. [[http://www.uniprot.org/uniprot/RPA34_YEAST RPA34_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors.<ref>PMID:9121426</ref>  [[http://www.uniprot.org/uniprot/RPAB3_YEAST RPAB3_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. [[http://www.uniprot.org/uniprot/RPA1_YEAST RPA1_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic core component of RNA polymerase I which synthesizes ribosomal RNA precursors. Forms the polymerase active center together with the second largest subunit. A single stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol I. A bridging helix emanates from RPA1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol I by acting as a ratchet that moves the RNA-DNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition (By similarity). [[http://www.uniprot.org/uniprot/RPA14_YEAST RPA14_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. A14 seems to play a role in the stability of subunits ABC23 and A43. In vitro, the A14-A43 subcomplex binds single-stranded RNA.<ref>PMID:12888498</ref>  [[http://www.uniprot.org/uniprot/RPAB5_YEAST RPAB5_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RBP10 is part of the core element with the central large cleft. [[http://www.uniprot.org/uniprot/RPA49_YEAST RPA49_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors.  A49 is easily dissociated from the rest of pol A (pol I), producing the form A*, which shows impaired transcriptional activity and increased sensitivity to alpha-amanitin. The function of A49 might be linked to the RNase H activity that was found associated with this subunit. [[http://www.uniprot.org/uniprot/RPAB1_YEAST RPAB1_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RPB5 is part of the lower jaw surrounding the central large cleft and thought to grab the incoming DNA template. Seems to be the major component in this process (By similarity).  
Line 25: Line 24:
</StructureSection>
</StructureSection>
[[Category: DNA-directed RNA polymerase]]
[[Category: DNA-directed RNA polymerase]]
[[Category: Large Structures]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Cramer, P]]
[[Category: Cramer, P]]

Revision as of 11:01, 4 March 2020

RNA polymerase I structure with an alternative dimer hingeRNA polymerase I structure with an alternative dimer hinge

Structural highlights

4ym7 is a 90 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Activity:DNA-directed RNA polymerase, with EC number 2.7.7.6
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[RPAB2_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RPB6 is part of the clamp element and togther with parts of RPB1 and RPB2 forms a pocket to which the RPB4-RPB7 subcomplex binds (By similarity). [RPAC2_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common core component of RNA polymerases I and III which synthesize ribosomal RNA precursors and small RNAs, such as 5S rRNA and tRNAs, respectively. [RPAC1_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I and III which synthesize ribosomal RNA precursors and small RNAs, such as 5S rRNA and tRNAs, respectively. RPAC1 is part of the Pol core element with the central large cleft and probably a clamp element that moves to open and close the cleft (By similarity). [RPA43_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. Through its association with RRN3 is involved in recruitment of Pol I to rDNA promoters. In vitro, the A13-A43 subcomplex binds single-stranded RNA.[1] [2] [RPA12_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. Involved in transcriptional termination. Involved in recruitment of RPA49 to Pol I.[3] [RPA2_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Second largest core component of RNA polymerase I which synthesizes ribosomal RNA precursors. Proposed to contribute to the polymerase catalytic activity and forms the polymerase active center together with the largest subunit. Pol I is composed of mobile elements and RPA2 is part of the core element with the central large cleft and probably a clamp element that moves to open and close the cleft (By similarity). [RPAB4_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pols are composed of mobile elements that move relative to each other. In Pol II, the core element with the central large cleft comprises RPB3, RBP10, RPB11, RPB12 and regions of RPB1 and RPB2 forming the active center. [RPA34_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors.[4] [RPAB3_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. [RPA1_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic core component of RNA polymerase I which synthesizes ribosomal RNA precursors. Forms the polymerase active center together with the second largest subunit. A single stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol I. A bridging helix emanates from RPA1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol I by acting as a ratchet that moves the RNA-DNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition (By similarity). [RPA14_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. A14 seems to play a role in the stability of subunits ABC23 and A43. In vitro, the A14-A43 subcomplex binds single-stranded RNA.[5] [RPAB5_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RBP10 is part of the core element with the central large cleft. [RPA49_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. A49 is easily dissociated from the rest of pol A (pol I), producing the form A*, which shows impaired transcriptional activity and increased sensitivity to alpha-amanitin. The function of A49 might be linked to the RNase H activity that was found associated with this subunit. [RPAB1_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RPB5 is part of the lower jaw surrounding the central large cleft and thought to grab the incoming DNA template. Seems to be the major component in this process (By similarity).

Publication Abstract from PubMed

RNA polymerase I (Pol I) is the central, 14-subunit enzyme that synthesizes the ribosomal RNA (rRNA) precursor in eukaryotic cells. The recent crystal structure of Pol I at 2.8 A resolution revealed two novel elements: the `expander' in the active-centre cleft and the `connector' that mediates Pol I dimerization [Engel et al. (2013), Nature (London), 502, 650-655]. Here, a Pol I structure in an alternative crystal form that was solved by molecular replacement using the original atomic Pol I structure is reported. The resulting alternative structure lacks the expander but still shows an expanded active-centre cleft. The neighbouring Pol I monomers form a homodimer with a relative orientation distinct from that observed previously, establishing the connector as a hinge between Pol I monomers.

An alternative RNA polymerase I structure reveals a dimer hinge.,Kostrewa D, Kuhn CD, Engel C, Cramer P Acta Crystallogr D Biol Crystallogr. 2015 Sep 1;71(Pt 9):1850-5. doi:, 10.1107/S1399004715012651. Epub 2015 Aug 25. PMID:26327374[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Peyroche G, Milkereit P, Bischler N, Tschochner H, Schultz P, Sentenac A, Carles C, Riva M. The recruitment of RNA polymerase I on rDNA is mediated by the interaction of the A43 subunit with Rrn3. EMBO J. 2000 Oct 16;19(20):5473-82. PMID:11032814 doi:http://dx.doi.org/10.1093/emboj/19.20.5473
  2. Meka H, Daoust G, Arnvig KB, Werner F, Brick P, Onesti S. Structural and functional homology between the RNAP(I) subunits A14/A43 and the archaeal RNAP subunits E/F. Nucleic Acids Res. 2003 Aug 1;31(15):4391-400. PMID:12888498
  3. Prescott EM, Osheim YN, Jones HS, Alen CM, Roan JG, Reeder RH, Beyer AL, Proudfoot NJ. Transcriptional termination by RNA polymerase I requires the small subunit Rpa12p. Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6068-73. Epub 2004 Apr 8. PMID:15073335 doi:http://dx.doi.org/10.1073/pnas.0401393101
  4. Gadal O, Mariotte-Labarre S, Chedin S, Quemeneur E, Carles C, Sentenac A, Thuriaux P. A34.5, a nonessential component of yeast RNA polymerase I, cooperates with subunit A14 and DNA topoisomerase I to produce a functional rRNA synthesis machine. Mol Cell Biol. 1997 Apr;17(4):1787-95. PMID:9121426
  5. Meka H, Daoust G, Arnvig KB, Werner F, Brick P, Onesti S. Structural and functional homology between the RNAP(I) subunits A14/A43 and the archaeal RNAP subunits E/F. Nucleic Acids Res. 2003 Aug 1;31(15):4391-400. PMID:12888498
  6. Kostrewa D, Kuhn CD, Engel C, Cramer P. An alternative RNA polymerase I structure reveals a dimer hinge. Acta Crystallogr D Biol Crystallogr. 2015 Sep 1;71(Pt 9):1850-5. doi:, 10.1107/S1399004715012651. Epub 2015 Aug 25. PMID:26327374 doi:http://dx.doi.org/10.1107/S1399004715012651

4ym7, resolution 5.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA