6qq0: Difference between revisions
m Protected "6qq0" [edit=sysop:move=sysop] |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='6qq0' size='340' side='right'caption='[[6qq0]], [[Resolution|resolution]] 1.40Å' scene=''> | <StructureSection load='6qq0' size='340' side='right'caption='[[6qq0]], [[Resolution|resolution]] 1.40Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6qq0]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6QQ0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6QQ0 FirstGlance]. <br> | <table><tr><td colspan='2'>[[6qq0]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_27511 Atcc 27511]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6QQ0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6QQ0 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HEC:HEME+C'>HEC</scene>, <scene name='pdbligand=NO2:NITRITE+ION'>NO2</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HEC:HEME+C'>HEC</scene>, <scene name='pdbligand=NO2:NITRITE+ION'>NO2</scene></td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Nitrite_reductase_(NO-forming) Nitrite reductase (NO-forming)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.7.2.1 1.7.2.1] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Nitrite_reductase_(NO-forming) Nitrite reductase (NO-forming)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.7.2.1 1.7.2.1] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6qq0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6qq0 OCA], [http://pdbe.org/6qq0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6qq0 RCSB], [http://www.ebi.ac.uk/pdbsum/6qq0 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6qq0 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6qq0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6qq0 OCA], [http://pdbe.org/6qq0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6qq0 RCSB], [http://www.ebi.ac.uk/pdbsum/6qq0 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6qq0 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
It is generally assumed that tethering enhances rates of electron harvesting and delivery to active sites in multidomain enzymes by proximity and sampling mechanisms. Here, we explore this idea in a tethered 3-domain, trimeric copper-containing nitrite reductase. By reverse engineering, we find that tethering does not enhance the rate of electron delivery from its pendant cytochrome c to the catalytic copper-containing core. Using a linker that harbors a gatekeeper tyrosine in a nitrite access channel, the tethered haem domain enables catalysis by other mechanisms. Tethering communicates the redox state of the haem to the distant T2Cu center that helps initiate substrate binding for catalysis. It also tunes copper reduction potentials, suppresses reductive enzyme inactivation, enhances enzyme affinity for substrate, and promotes intercopper electron transfer. Tethering has multiple unanticipated beneficial roles, the combination of which fine-tunes function beyond simplistic mechanisms expected from proximity and restrictive sampling models. | |||
Unexpected Roles of a Tether Harboring a Tyrosine Gatekeeper Residue in Modular Nitrite Reductase Catalysis.,Hedison TM, Shenoy RT, Iorgu AI, Heyes DJ, Fisher K, Wright GSA, Hay S, Eady RR, Antonyuk SV, Hasnain SS, Scrutton NS ACS Catal. 2019 Jul 5;9(7):6087-6099. doi: 10.1021/acscatal.9b01266. Epub 2019, May 29. PMID:32051772<ref>PMID:32051772</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 6qq0" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Nitrite reductase 3D structures|Nitrite reductase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Atcc 27511]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Antonyuk, S V]] | [[Category: Antonyuk, S V]] |
Revision as of 13:28, 26 February 2020
Crystal structure of nitrite bound Y323E mutant of haem-Cu containing nitrite reductase from Ralstonia pickettiiCrystal structure of nitrite bound Y323E mutant of haem-Cu containing nitrite reductase from Ralstonia pickettii
Structural highlights
Publication Abstract from PubMedIt is generally assumed that tethering enhances rates of electron harvesting and delivery to active sites in multidomain enzymes by proximity and sampling mechanisms. Here, we explore this idea in a tethered 3-domain, trimeric copper-containing nitrite reductase. By reverse engineering, we find that tethering does not enhance the rate of electron delivery from its pendant cytochrome c to the catalytic copper-containing core. Using a linker that harbors a gatekeeper tyrosine in a nitrite access channel, the tethered haem domain enables catalysis by other mechanisms. Tethering communicates the redox state of the haem to the distant T2Cu center that helps initiate substrate binding for catalysis. It also tunes copper reduction potentials, suppresses reductive enzyme inactivation, enhances enzyme affinity for substrate, and promotes intercopper electron transfer. Tethering has multiple unanticipated beneficial roles, the combination of which fine-tunes function beyond simplistic mechanisms expected from proximity and restrictive sampling models. Unexpected Roles of a Tether Harboring a Tyrosine Gatekeeper Residue in Modular Nitrite Reductase Catalysis.,Hedison TM, Shenoy RT, Iorgu AI, Heyes DJ, Fisher K, Wright GSA, Hay S, Eady RR, Antonyuk SV, Hasnain SS, Scrutton NS ACS Catal. 2019 Jul 5;9(7):6087-6099. doi: 10.1021/acscatal.9b01266. Epub 2019, May 29. PMID:32051772[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|