4er4: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:


==HIGH-RESOLUTION X-RAY ANALYSES OF RENIN INHIBITOR-ASPARTIC PROTEINASE COMPLEXES==
==HIGH-RESOLUTION X-RAY ANALYSES OF RENIN INHIBITOR-ASPARTIC PROTEINASE COMPLEXES==
<StructureSection load='4er4' size='340' side='right' caption='[[4er4]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
<StructureSection load='4er4' size='340' side='right'caption='[[4er4]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4er4]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Crypa Crypa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4ER4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ER4 FirstGlance]. <br>
<table><tr><td colspan='2'>[[4er4]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Crypa Crypa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4ER4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ER4 FirstGlance]. <br>
Line 12: Line 12:
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/er/4er4_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/er/4er4_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
Line 27: Line 27:
</div>
</div>
<div class="pdbe-citations 4er4" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 4er4" style="background-color:#fffaf0;"></div>
==See Also==
*[[Pepsin|Pepsin]]
== References ==
== References ==
<references/>
<references/>
Line 33: Line 36:
[[Category: Crypa]]
[[Category: Crypa]]
[[Category: Hydrolase]]
[[Category: Hydrolase]]
[[Category: Large Structures]]
[[Category: Blundell, T L]]
[[Category: Blundell, T L]]
[[Category: Foundling, S I]]
[[Category: Foundling, S I]]

Revision as of 12:42, 5 February 2020

HIGH-RESOLUTION X-RAY ANALYSES OF RENIN INHIBITOR-ASPARTIC PROTEINASE COMPLEXESHIGH-RESOLUTION X-RAY ANALYSES OF RENIN INHIBITOR-ASPARTIC PROTEINASE COMPLEXES

Structural highlights

4er4 is a 2 chain structure with sequence from Crypa. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
NonStd Res:
Activity:Hydrolase, with EC number 3.4.23.18, 3.4.23.19, 3.4.23.20, 3.4.23.21, 3.4.23.22, 3.4.23.23, 3.4.23.24, 3.4.23.25, 3.4.23.26, 3.4.23.28 and 3.4.23.30 3.4.21.103, 3.4.23.18, 3.4.23.19, 3.4.23.20, 3.4.23.21, 3.4.23.22, 3.4.23.23, 3.4.23.24, 3.4.23.25, 3.4.23.26, 3.4.23.28 and 3.4.23.30
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Inhibitors of the conversion of angiotensinogen to the vasoconstrictor angiotensin II have considerable value as antihypertensive agents. For example, captopril and enalapril are clinically useful as inhibitors of angiotensin-converting enzyme. This has encouraged intense activity in the development of inhibitors of kidney renin, which is a very specific aspartic proteinase catalysing the first and rate limiting step in the conversion of angiotensinogen to angiotensin II. The most effective inhibitors such as H-142 and L-363,564 have used non-hydrolysable analogues of the proposed transition state, and partial sequences of angiotensinogen (Table 1). H-142 is effective in lowering blood pressure in humans but has no significant effect on other aspartic proteinases such as pepsin in the human body (Table 1). At present there are no crystal structures available for human or mouse renins although three-dimensional models demonstrate close structural similarity to other spartic proteinases. We have therefore determined by X-ray analysis the three-dimensional structures of H-142 and L-363,564 complexed with the aspartic proteinase endothiapepsin, which binds these inhibitors with affinities not greatly different from those measured against human renin (Table 1). The structures of these complexes and of that between endothiapepsin and the general aspartic proteinase inhibitor, H-256 (Table 1) define the common hydrogen bonding schemes that allow subtle differences in side-chain orientations and in the positions of the transition state analogues with respect to the active-site aspartates.

High resolution X-ray analyses of renin inhibitor-aspartic proteinase complexes.,Foundling SI, Cooper J, Watson FE, Cleasby A, Pearl LH, Sibanda BL, Hemmings A, Wood SP, Blundell TL, Valler MJ, et al. Nature. 1987 May 28-Jun 3;327(6120):349-52. PMID:3295561[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Foundling SI, Cooper J, Watson FE, Cleasby A, Pearl LH, Sibanda BL, Hemmings A, Wood SP, Blundell TL, Valler MJ, et al.. High resolution X-ray analyses of renin inhibitor-aspartic proteinase complexes. Nature. 1987 May 28-Jun 3;327(6120):349-52. PMID:3295561 doi:http://dx.doi.org/10.1038/327349a0

4er4, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA