4phh: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='4phh' size='340' side='right'caption='[[4phh]], [[Resolution|resolution]] 2.35Å' scene=''> | <StructureSection load='4phh' size='340' side='right'caption='[[4phh]], [[Resolution|resolution]] 2.35Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4phh]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4PHH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4PHH FirstGlance]. <br> | <table><tr><td colspan='2'>[[4phh]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Baker's_yeast Baker's yeast]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4PHH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4PHH FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=2UK:5-O-[(R)-HYDROXY{[(S)-HYDROXY(PHOSPHONOAMINO)PHOSPHORYL]OXY}PHOSPHORYL]-N-[3-(PROPANOYLAMINO)PROPYL]GUANOSINE'>2UK</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=2UK:5-O-[(R)-HYDROXY{[(S)-HYDROXY(PHOSPHONOAMINO)PHOSPHORYL]OXY}PHOSPHORYL]-N-[3-(PROPANOYLAMINO)PROPYL]GUANOSINE'>2UK</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4phf|4phf]], [[4phg|4phg]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4phf|4phf]], [[4phg|4phg]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">YPT7, VAM4, YML001W, YM8270.02 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4phh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4phh OCA], [http://pdbe.org/4phh PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4phh RCSB], [http://www.ebi.ac.uk/pdbsum/4phh PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4phh ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4phh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4phh OCA], [http://pdbe.org/4phh PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4phh RCSB], [http://www.ebi.ac.uk/pdbsum/4phh PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4phh ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 26: | Line 27: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Baker's yeast]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Goody, R S]] | [[Category: Goody, R S]] |
Revision as of 10:47, 8 January 2020
Crystal structure of Ypt7 covalently modified with GNPCrystal structure of Ypt7 covalently modified with GNP
Structural highlights
Function[YPT7_YEAST] Needed for homotypic vacuole fusion, the last step in the vacuole inheritance process. Publication Abstract from PubMedGTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase-acryl-nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins. Locking GTPases covalently in their functional states.,Wiegandt D, Vieweg S, Hofmann F, Koch D, Li F, Wu YW, Itzen A, Muller MP, Goody RS Nat Commun. 2015 Jul 16;6:7773. doi: 10.1038/ncomms8773. PMID:26178622[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|