6iqf: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='6iqf' size='340' side='right'caption='[[6iqf]], [[Resolution|resolution]] 1.46Å' scene=''> | <StructureSection load='6iqf' size='340' side='right'caption='[[6iqf]], [[Resolution|resolution]] 1.46Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6iqf]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6IQF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6IQF FirstGlance]. <br> | <table><tr><td colspan='2'>[[6iqf]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Arath Arath]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6IQF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6IQF FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6iqf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6iqf OCA], [http://pdbe.org/6iqf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6iqf RCSB], [http://www.ebi.ac.uk/pdbsum/6iqf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6iqf ProSAT]</span></td></tr> | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PRF3 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=3702 ARATH])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6iqf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6iqf OCA], [http://pdbe.org/6iqf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6iqf RCSB], [http://www.ebi.ac.uk/pdbsum/6iqf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6iqf ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | == Function == | ||
Line 17: | Line 18: | ||
</div> | </div> | ||
<div class="pdbe-citations 6iqf" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 6iqf" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Profilin 3D Structures|Profilin 3D Structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Arath]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Gao, Y]] | [[Category: Gao, Y]] |
Revision as of 13:46, 18 December 2019
crystal structure of Arabidopsis thaliana Profilin 3crystal structure of Arabidopsis thaliana Profilin 3
Structural highlights
Function[PROF5_ARATH] Binds to actin and affects the structure of the cytoskeleton. At high concentrations, profilin prevents the polymerization of actin, whereas it enhances it at low concentrations. By binding to PIP2, it inhibits the formation of IP3 and DG (By similarity). Publication Abstract from PubMedProfilins are abundant cytosolic proteins that are universally expressed in eukaryotes and regulate actin filament elongation by binding to both monomeric actin (G-actin) and formin proteins. The atypical profilin Arabidopsis AtPRF3 has been reported to cooperate with canonical profilin isoforms in suppressing formin-mediated actin polymerization during plant innate immunity responses. AtPRF3 has a 37-amino-acid-long N terminal extension (NTE), and its suppressive effect on actin assembly is derived from enhanced interaction with the poly-proline (Poly-P) of the formin AtFH1. However, the molecular mechanism remains unclear. Here, we solved the crystal structures of AtPRF3Delta22 and AtPRF3Delta37, as well as AtPRF2 apo form and in complex with AtFH1 Poly-P at 1.5-3.6 A resolutions. By combining these structures with molecular modeling, we found that AtPRF3Delta22 NTE has high plasticity, with a primary "closed" conformation that can adopt an open conformation that enables Poly-P binding. Furthermore, using molecular dynamics simulation and free-energy calculations of protein-protein binding, along with experimental validation, we show that the AtPRF3Delta22 binds to Poly-P in an adaptive manner, thereby enabling different binding modes that maintain the interaction through disordered sequences. Together, our structural and simulation results suggest that the dynamic conformational changes of the AtPRF3 NTE upon Poly-P binding modulate their interactions to fine-tune formin-mediated actin assembly. Structural and computational examination of the Arabidopsis profilin-Poly-P complex reveals mechanistic details in profilin-regulated actin assembly.,Qiao Z, Sun H, Ng JTY, Ma Q, Koh SH, Mu Y, Miao Y, Gao YG J Biol Chem. 2019 Oct 25. pii: RA119.011307. doi: 10.1074/jbc.RA119.011307. PMID:31653702[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|