1qfe: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==THE STRUCTURE OF TYPE I 3-DEHYDROQUINATE DEHYDRATASE FROM SALMONELLA TYPHI== | ==THE STRUCTURE OF TYPE I 3-DEHYDROQUINATE DEHYDRATASE FROM SALMONELLA TYPHI== | ||
<StructureSection load='1qfe' size='340' side='right' caption='[[1qfe]], [[Resolution|resolution]] 2.10Å' scene=''> | <StructureSection load='1qfe' size='340' side='right'caption='[[1qfe]], [[Resolution|resolution]] 2.10Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1qfe]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Salmonella_typhi Salmonella typhi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QFE OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1QFE FirstGlance]. <br> | <table><tr><td colspan='2'>[[1qfe]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Salmonella_typhi Salmonella typhi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QFE OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1QFE FirstGlance]. <br> | ||
Line 27: | Line 27: | ||
</div> | </div> | ||
<div class="pdbe-citations 1qfe" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 1qfe" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Dehydroquinase 3D structures|Dehydroquinase 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
Line 32: | Line 35: | ||
</StructureSection> | </StructureSection> | ||
[[Category: 3-dehydroquinate dehydratase]] | [[Category: 3-dehydroquinate dehydratase]] | ||
[[Category: Large Structures]] | |||
[[Category: Salmonella typhi]] | [[Category: Salmonella typhi]] | ||
[[Category: Coggins, J R]] | [[Category: Coggins, J R]] |
Revision as of 13:35, 27 November 2019
THE STRUCTURE OF TYPE I 3-DEHYDROQUINATE DEHYDRATASE FROM SALMONELLA TYPHITHE STRUCTURE OF TYPE I 3-DEHYDROQUINATE DEHYDRATASE FROM SALMONELLA TYPHI
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe structures of enzymes catalyzing the reactions in central metabolic pathways are generally well conserved as are their catalytic mechanisms. The two types of 3-dehydroquinate dehydratase (DHQase) are therefore most unusual since they are unrelated at the sequence level and they utilize completely different mechanisms to catalyze the same overall reaction. The type I enzymes catalyze a cis-dehydration of 3-dehydroquinate via a covalent imine intermediate, while the type II enzymes catalyze a trans-dehydration via an enolate intermediate. Here we report the three-dimensional structures of a representative member of each type of biosynthetic DHQase. Both enzymes function as part of the shikimate pathway, which is essential in microorganisms and plants for the biosynthesis of aromatic compounds including folate, ubiquinone and the aromatic amino acids. An explanation for the presence of two different enzymes catalyzing the same reaction is presented. The absence of the shikimate pathway in animals makes it an attractive target for antimicrobial agents. The availability of these two structures opens the way for the design of highly specific enzyme inhibitors with potential importance as selective therapeutic agents. The two types of 3-dehydroquinase have distinct structures but catalyze the same overall reaction.,Gourley DG, Shrive AK, Polikarpov I, Krell T, Coggins JR, Hawkins AR, Isaacs NW, Sawyer L Nat Struct Biol. 1999 Jun;6(6):521-5. PMID:10360352[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|