6gfr: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='6gfr' size='340' side='right'caption='[[6gfr]], [[Resolution|resolution]] 1.92Å' scene=''> | <StructureSection load='6gfr' size='340' side='right'caption='[[6gfr]], [[Resolution|resolution]] 1.92Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6gfr]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6GFR OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6GFR FirstGlance]. <br> | <table><tr><td colspan='2'>[[6gfr]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Theeb Theeb]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6GFR OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6GFR FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">tll1466 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=197221 THEEB])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6gfr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6gfr OCA], [http://pdbe.org/6gfr PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6gfr RCSB], [http://www.ebi.ac.uk/pdbsum/6gfr PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6gfr ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6gfr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6gfr OCA], [http://pdbe.org/6gfr PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6gfr RCSB], [http://www.ebi.ac.uk/pdbsum/6gfr PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6gfr ProSAT]</span></td></tr> | ||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Plants, algae, and cyanobacteria fix carbon dioxide to organic carbon with the Calvin-Benson (CB) cycle. Phosphoribulokinase (PRK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are essential CB-cycle enzymes that control substrate availability for the carboxylation enzyme Rubisco. PRK consumes ATP to produce the Rubisco substrate ribulose bisphosphate (RuBP). GAPDH catalyzes the reduction step of the CB cycle with NADPH to produce the sugar glyceraldehyde 3-phosphate (GAP), which is used for regeneration of RuBP and is the main exit point of the cycle. GAPDH and PRK are coregulated by the redox state of a conditionally disordered protein CP12, which forms a ternary complex with both enzymes. However, the structural basis of CB-cycle regulation by CP12 is unknown. Here, we show how CP12 modulates the activity of both GAPDH and PRK. Using thermophilic cyanobacterial homologs, we solve crystal structures of GAPDH with different cofactors and CP12 bound, and the ternary GAPDH-CP12-PRK complex by electron cryo-microscopy, we reveal that formation of the N-terminal disulfide preorders CP12 prior to binding the PRK active site, which is resolved in complex with CP12. We find that CP12 binding to GAPDH influences substrate accessibility of all GAPDH active sites in the binary and ternary inhibited complexes. Our structural and biochemical data explain how CP12 integrates responses from both redox state and nicotinamide dinucleotide availability to regulate carbon fixation. | |||
Structural basis of light-induced redox regulation in the Calvin-Benson cycle in cyanobacteria.,McFarlane CR, Shah NR, Kabasakal BV, Echeverria B, Cotton CAR, Bubeck D, Murray JW Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):20984-20990. doi:, 10.1073/pnas.1906722116. Epub 2019 Sep 30. PMID:31570616<ref>PMID:31570616</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 6gfr" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Glyceraldehyde-3-phosphate dehydrogenase 3D structures|Glyceraldehyde-3-phosphate dehydrogenase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Theeb]] | |||
[[Category: McFarlane, C R]] | [[Category: McFarlane, C R]] | ||
[[Category: Murray, J W]] | [[Category: Murray, J W]] |