6ces: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 21: Line 21:
</div>
</div>
<div class="pdbe-citations 6ces" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 6ces" style="background-color:#fffaf0;"></div>
==See Also==
*[[GTP-binding protein 3D structures|GTP-binding protein 3D structures]]
== References ==
== References ==
<references/>
<references/>

Revision as of 20:14, 20 November 2019

Cryo-EM structure of GATOR1-RAGCryo-EM structure of GATOR1-RAG

Structural highlights

6ces is a 5 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:NPRL2, TUSC4 (HUMAN), NPRL3, C16orf35, CGTHBA, MARE (HUMAN), DEPDC5, KIAA0645 (HUMAN), RRAGA (HUMAN), RRAGC (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[NPRL2_HUMAN] Inactivating mutations and truncating deletions in the genes encoding GATOR1 proteins, including NPRL2, are detected in glioblastoma and ovarian tumors and are associated with loss of heterozygosity events. Inactivation of GATOR1 proteins promotes constitutive localization of mTORC1 to the lysosomal membrane and blocks mTORC1 inactivation following amino acid withdrawal (PubMed:23723238).[1] The disease is caused by mutations affecting the gene represented in this entry. [DEPD5_HUMAN] Rolandic epilepsy;Autosomal dominant nocturnal frontal lobe epilepsy;Autosomal dominant epilepsy with auditory features;Familial focal epilepsy with variable foci. The disease is caused by mutations affecting the gene represented in this entry. Inactivating mutations and truncating deletions in the genes encoding GATOR1 proteins, including DEPDC5, are detected in glioblastoma and ovarian tumors and are associated with loss of heterozygosity events. Inactivation of GATOR1 proteins promotes constitutive localization of mTORC1 to the lysosomal membrane and blocks mTORC1 inactivation following amino acid withdrawal (PubMed:23723238).[2] [NPRL3_HUMAN] Inactivating mutations and truncating deletions in the genes encoding GATOR1 proteins are detected in glioblastoma and ovarian tumors and are associated with loss of heterozygosity events. Inactivation of GATOR1 proteins promotes constitutive localization of mTORC1 to the lysosomal membrane and blocks mTORC1 inactivation following amino acid withdrawal (PubMed:23723238).[3] The disease is caused by mutations affecting the gene represented in this entry.

Function

[RRAGA_HUMAN] Guanine nucleotide-binding protein that plays a crucial role in the cellular response to amino acid availability through regulation of the mTORC1 signaling cascade. Forms heterodimeric Rag complexes with RRAGC or RRAGD and cycles between an inactive GDP-bound and an active GTP-bound form. In its active form participates in the relocalization of mTORC1 to the lysosomes and its subsequent activation by the GTPase RHEB. Involved in the RCC1/Ran-GTPase pathway. May play a direct role in a TNF-alpha signaling pathway leading to induction of cell death. May alternatively act as a cellular target for adenovirus E3-14.7K, an inhibitor of TNF-alpha functions, thereby affecting cell death.[4] [5] [6] [7] [NPRL2_HUMAN] As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the TORC1 pathway. The GATOR1 complex strongly increases GTP hydrolysis by RRAGA and RRAGB within RRAGC-containing heterodimers, thereby deactivating RRAGs, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling. The GATOR1 complex is negatively regulated by GATOR2 the other GATOR subcomplex in this amino acid-sensing branch of the TORC1 pathway.[8] Suppresses Src-dependent tyrosine phosphorylation and activation of PDPK1 and its downstream signaling. Down-regulates PDPK1 kinase activity by interfering with tyrosine phosphorylation at 'Tyr-9', 'Tyr-373' and 'Tyr-376' residues. May act as a tumor suppressor. Suppresses cell growth and enhances sensitivity to various anticancer drugs.[9] [DEPD5_HUMAN] As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the TORC1 pathway. The GATOR1 complex strongly increases GTP hydrolysis by RRAGA and RRAGB within RRAGC-containing heterodimers, thereby deactivating RRAGs, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling. The GATOR1 complex is negatively regulated by GATOR2 the other GATOR subcomplex in this amino acid-sensing branch of the TORC1 pathway.[10] [11] [NPRL3_HUMAN] As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the TORC1 pathway. The GATOR1 complex strongly increases GTP hydrolysis by RRAGA and RRAGB within RRAGC-containing heterodimers, thereby deactivating RRAGs, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling. The GATOR1 complex is negatively regulated by GATOR2 the other GATOR subcomplex in this amino acid-sensing branch of the TORC1 pathway.[12] [RRAGC_HUMAN] Guanine nucleotide-binding protein forming heterodimeric Rag complexes required for the amino acid-induced relocalization of mTORC1 to the lysosomes and its subsequent activation by the GTPase RHEB. This is a crucial step in the activation of the TOR signaling cascade by amino acids.[13]

Publication Abstract from PubMed

Nutrients, such as amino acids and glucose, signal through the Rag GTPases to activate mTORC1. The GATOR1 protein complex-comprising DEPDC5, NPRL2 and NPRL3-regulates the Rag GTPases as a GTPase-activating protein (GAP) for RAGA; loss of GATOR1 desensitizes mTORC1 signalling to nutrient starvation. GATOR1 components have no sequence homology to other proteins, so the function of GATOR1 at the molecular level is currently unknown. Here we used cryo-electron microscopy to solve structures of GATOR1 and GATOR1-Rag GTPases complexes. GATOR1 adopts an extended architecture with a cavity in the middle; NPRL2 links DEPDC5 and NPRL3, and DEPDC5 contacts the Rag GTPase heterodimer. Biochemical analyses reveal that our GATOR1-Rag GTPases structure is inhibitory, and that at least two binding modes must exist between the Rag GTPases and GATOR1. Direct interaction of DEPDC5 with RAGA inhibits GATOR1-mediated stimulation of GTP hydrolysis by RAGA, whereas weaker interactions between the NPRL2-NPRL3 heterodimer and RAGA execute GAP activity. These data reveal the structure of a component of the nutrient-sensing mTORC1 pathway and a non-canonical interaction between a GAP and its substrate GTPase.

Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes.,Shen K, Huang RK, Brignole EJ, Condon KJ, Valenstein ML, Chantranupong L, Bomaliyamu A, Choe A, Hong C, Yu Z, Sabatini DM Nature. 2018 Apr 5;556(7699):64-69. doi: 10.1038/nature26158. Epub 2018 Mar 28. PMID:29590090[14]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013 May 31;340(6136):1100-6. doi: 10.1126/science.1232044. PMID:23723238 doi:http://dx.doi.org/10.1126/science.1232044
  2. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013 May 31;340(6136):1100-6. doi: 10.1126/science.1232044. PMID:23723238 doi:http://dx.doi.org/10.1126/science.1232044
  3. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013 May 31;340(6136):1100-6. doi: 10.1126/science.1232044. PMID:23723238 doi:http://dx.doi.org/10.1126/science.1232044
  4. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010 Apr 16;141(2):290-303. doi: 10.1016/j.cell.2010.02.024. Epub 2010 Apr , 8. PMID:20381137 doi:10.1016/j.cell.2010.02.024
  5. Deng L, Jiang C, Chen L, Jin J, Wei J, Zhao L, Chen M, Pan W, Xu Y, Chu H, Wang X, Ge X, Li D, Liao L, Liu M, Li L, Wang P. The ubiquitination of rag A GTPase by RNF152 negatively regulates mTORC1 activation. Mol Cell. 2015 Jun 4;58(5):804-18. doi: 10.1016/j.molcel.2015.03.033. Epub 2015, Apr 30. PMID:25936802 doi:http://dx.doi.org/10.1016/j.molcel.2015.03.033
  6. Li Y, Kang J, Horwitz MS. Interaction of an adenovirus 14.7-kilodalton protein inhibitor of tumor necrosis factor alpha cytolysis with a new member of the GTPase superfamily of signal transducers. J Virol. 1997 Feb;71(2):1576-82. PMID:8995684
  7. Hirose E, Nakashima N, Sekiguchi T, Nishimoto T. RagA is a functional homologue of S. cerevisiae Gtr1p involved in the Ran/Gsp1-GTPase pathway. J Cell Sci. 1998 Jan;111 ( Pt 1):11-21. PMID:9394008
  8. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013 May 31;340(6136):1100-6. doi: 10.1126/science.1232044. PMID:23723238 doi:http://dx.doi.org/10.1126/science.1232044
  9. Kurata A, Katayama R, Watanabe T, Tsuruo T, Fujita N. TUSC4/NPRL2, a novel PDK1-interacting protein, inhibits PDK1 tyrosine phosphorylation and its downstream signaling. Cancer Sci. 2008 Sep;99(9):1827-34. Epub 2008 Jul 4. PMID:18616680 doi:http://dx.doi.org/CAS874
  10. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013 May 31;340(6136):1100-6. doi: 10.1126/science.1232044. PMID:23723238 doi:http://dx.doi.org/10.1126/science.1232044
  11. Parmigiani A, Nourbakhsh A, Ding B, Wang W, Kim YC, Akopiants K, Guan KL, Karin M, Budanov AV. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep. 2014 Nov 20;9(4):1281-91. doi: 10.1016/j.celrep.2014.10.019. PMID:25457612 doi:http://dx.doi.org/10.1016/j.celrep.2014.10.019
  12. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013 May 31;340(6136):1100-6. doi: 10.1126/science.1232044. PMID:23723238 doi:http://dx.doi.org/10.1126/science.1232044
  13. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010 Apr 16;141(2):290-303. doi: 10.1016/j.cell.2010.02.024. Epub 2010 Apr , 8. PMID:20381137 doi:10.1016/j.cell.2010.02.024
  14. Shen K, Huang RK, Brignole EJ, Condon KJ, Valenstein ML, Chantranupong L, Bomaliyamu A, Choe A, Hong C, Yu Z, Sabatini DM. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature. 2018 Apr 5;556(7699):64-69. doi: 10.1038/nature26158. Epub 2018 Mar 28. PMID:29590090 doi:http://dx.doi.org/10.1038/nature26158

6ces, resolution 4.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA