5yhw: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of Pig SAMHD1== | ==Crystal structure of Pig SAMHD1== | ||
<StructureSection load='5yhw' size='340' side='right' caption='[[5yhw]], [[Resolution|resolution]] 2.70Å' scene=''> | <StructureSection load='5yhw' size='340' side='right'caption='[[5yhw]], [[Resolution|resolution]] 2.70Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5yhw]] is a 8 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5YHW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5YHW FirstGlance]. <br> | <table><tr><td colspan='2'>[[5yhw]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Pig Pig]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5YHW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5YHW FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=DGT:2-DEOXYGUANOSINE-5-TRIPHOSPHATE'>DGT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=DGT:2-DEOXYGUANOSINE-5-TRIPHOSPHATE'>DGT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SAMHD1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9823 PIG])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5yhw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5yhw OCA], [http://pdbe.org/5yhw PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5yhw RCSB], [http://www.ebi.ac.uk/pdbsum/5yhw PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5yhw ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5yhw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5yhw OCA], [http://pdbe.org/5yhw PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5yhw RCSB], [http://www.ebi.ac.uk/pdbsum/5yhw PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5yhw ProSAT]</span></td></tr> | ||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Sterile alpha-motif/histidine-aspartate domain-containing protein 1 (SAMHD1) is an intrinsic antiviral restriction factor known to play a vital role in preventing multiple viral infections and in the control of the cellular deoxynucleoside triphosphate (dNTP) pool. Human and mouse SAMHD1 have both been extensively studied; however, our knowledge on porcine SAMHD1 is limited. Here, we report our findings from comprehensive structural and functional studies on porcine SAMHD1. We determined the crystal structure of porcine SAMHD1 and showed that it forms a symmetric tetramer. Moreover, we modified the deoxynucleotide triphosphohydrolase (dNTPase) activity of SAMHD1 by site-directed mutagenesis based on the crystal structure, and obtained an artificial dimeric enzyme possessing high dNTPase activity. Taken together, our results define the mechanism underlying dNTP regulation and provide a deeper understanding of the regulation of porcine SAMHD1 functions. Directed modification of key residues based on the protein structure enhances the activity of the enzyme, which will be beneficial in the search for new antiviral strategies and for future translational applications. | |||
Structural characterization and directed modification of Sus scrofa SAMHD1 reveal the mechanism underlying deoxynucleotide regulation.,Kong J, Wang MM, He SY, Peng X, Qin XH FEBS J. 2019 Oct;286(19):3844-3857. doi: 10.1111/febs.14943. Epub 2019 Jul 1. PMID:31152619<ref>PMID:31152619</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 5yhw" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | |||
[[Category: Pig]] | |||
[[Category: Kong, J]] | [[Category: Kong, J]] | ||
[[Category: Qin, X H]] | [[Category: Qin, X H]] | ||
[[Category: Hydrolase]] | [[Category: Hydrolase]] | ||
[[Category: Pig-samhd1]] | [[Category: Pig-samhd1]] |
Revision as of 12:26, 30 October 2019
Crystal structure of Pig SAMHD1Crystal structure of Pig SAMHD1
Structural highlights
Publication Abstract from PubMedSterile alpha-motif/histidine-aspartate domain-containing protein 1 (SAMHD1) is an intrinsic antiviral restriction factor known to play a vital role in preventing multiple viral infections and in the control of the cellular deoxynucleoside triphosphate (dNTP) pool. Human and mouse SAMHD1 have both been extensively studied; however, our knowledge on porcine SAMHD1 is limited. Here, we report our findings from comprehensive structural and functional studies on porcine SAMHD1. We determined the crystal structure of porcine SAMHD1 and showed that it forms a symmetric tetramer. Moreover, we modified the deoxynucleotide triphosphohydrolase (dNTPase) activity of SAMHD1 by site-directed mutagenesis based on the crystal structure, and obtained an artificial dimeric enzyme possessing high dNTPase activity. Taken together, our results define the mechanism underlying dNTP regulation and provide a deeper understanding of the regulation of porcine SAMHD1 functions. Directed modification of key residues based on the protein structure enhances the activity of the enzyme, which will be beneficial in the search for new antiviral strategies and for future translational applications. Structural characterization and directed modification of Sus scrofa SAMHD1 reveal the mechanism underlying deoxynucleotide regulation.,Kong J, Wang MM, He SY, Peng X, Qin XH FEBS J. 2019 Oct;286(19):3844-3857. doi: 10.1111/febs.14943. Epub 2019 Jul 1. PMID:31152619[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|