5nlb: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of human CUL3 N-terminal domain bound to KEAP1 BTB and 3-box== | ==Crystal structure of human CUL3 N-terminal domain bound to KEAP1 BTB and 3-box== | ||
<StructureSection load='5nlb' size='340' side='right' caption='[[5nlb]], [[Resolution|resolution]] 3.45Å' scene=''> | <StructureSection load='5nlb' size='340' side='right'caption='[[5nlb]], [[Resolution|resolution]] 3.45Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5nlb]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5NLB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5NLB FirstGlance]. <br> | <table><tr><td colspan='2'>[[5nlb]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5NLB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5NLB FirstGlance]. <br> | ||
Line 11: | Line 11: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/CUL3_HUMAN CUL3_HUMAN]] Core component of multiple cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins. As a scaffold protein may contribute to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme. The E3 ubiquitin-protein ligase activity of the complex is dependent on the neddylation of the cullin subunit and is inhibited by the association of the deneddylated cullin subunit with TIP120A/CAND1 (By similarity). The functional specificity of the BCR complex depends on the BTB domain-containing protein as the susbstrate recognition component. BCR(SPOP) is involved in ubiquitination of BMI1/PCGF4, H2AFY and DAXX, and probably GLI2 or GLI3. BCR(KLHL9-KLHL13) controls the dynamic behavior of AURKB on mitotic chromosomes and thereby coordinates faithful mitotic progression and completion of cytokinesis. BCR(KLHL12) is involved in ER-Golgi transport by regulating the size of COPII coats, thereby playing a key role in collagen export, which is required for embryonic stem (ES) cells division: BCR(KLHL12) acts by mediating monoubiquitination of SEC31 (SEC31A or SEC31B). BCR(KLHL3) acts as a regulator of ion transport in the distal nephron; possibly by mediating ubiquitination of SLC12A3/NCC. Involved in ubiquitination of cyclin E and of cyclin D1 (in vitro) thus involved in regulation of G1/S transition.<ref>PMID:10500095</ref> <ref>PMID:11311237</ref> <ref>PMID:15897469</ref> <ref>PMID:16524876</ref> <ref>PMID:17543862</ref> <ref>PMID:22358839</ref> | [[http://www.uniprot.org/uniprot/CUL3_HUMAN CUL3_HUMAN]] Core component of multiple cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins. As a scaffold protein may contribute to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme. The E3 ubiquitin-protein ligase activity of the complex is dependent on the neddylation of the cullin subunit and is inhibited by the association of the deneddylated cullin subunit with TIP120A/CAND1 (By similarity). The functional specificity of the BCR complex depends on the BTB domain-containing protein as the susbstrate recognition component. BCR(SPOP) is involved in ubiquitination of BMI1/PCGF4, H2AFY and DAXX, and probably GLI2 or GLI3. BCR(KLHL9-KLHL13) controls the dynamic behavior of AURKB on mitotic chromosomes and thereby coordinates faithful mitotic progression and completion of cytokinesis. BCR(KLHL12) is involved in ER-Golgi transport by regulating the size of COPII coats, thereby playing a key role in collagen export, which is required for embryonic stem (ES) cells division: BCR(KLHL12) acts by mediating monoubiquitination of SEC31 (SEC31A or SEC31B). BCR(KLHL3) acts as a regulator of ion transport in the distal nephron; possibly by mediating ubiquitination of SLC12A3/NCC. Involved in ubiquitination of cyclin E and of cyclin D1 (in vitro) thus involved in regulation of G1/S transition.<ref>PMID:10500095</ref> <ref>PMID:11311237</ref> <ref>PMID:15897469</ref> <ref>PMID:16524876</ref> <ref>PMID:17543862</ref> <ref>PMID:22358839</ref> | ||
==See Also== | |||
*[[Cullin 3D structures|Cullin 3D structures]] | |||
*[[Galectin 3D structures|Galectin 3D structures]] | |||
*[[Kelch-like protein 3D structures|Kelch-like protein 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
Line 16: | Line 21: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Human]] | [[Category: Human]] | ||
[[Category: Large Structures]] | |||
[[Category: Adamson, R]] | [[Category: Adamson, R]] | ||
[[Category: Arrowsmith, C H]] | [[Category: Arrowsmith, C H]] |
Revision as of 09:45, 16 October 2019
Crystal structure of human CUL3 N-terminal domain bound to KEAP1 BTB and 3-boxCrystal structure of human CUL3 N-terminal domain bound to KEAP1 BTB and 3-box
Structural highlights
Disease[CUL3_HUMAN] Pseudohypoaldosteronism type 2E. Defects in CUL3 are the cause of Pseudohypoaldosteronism type 2E (PHA2E) [MIM:614496]. An autosomal dominant disorder characterized by severe hypertension, hyperkalemia, hyperchloremia, hyperchloremic metabolic acidosis, and correction of physiologic abnormalities by thiazide diuretics.[1] Function[CUL3_HUMAN] Core component of multiple cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins. As a scaffold protein may contribute to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme. The E3 ubiquitin-protein ligase activity of the complex is dependent on the neddylation of the cullin subunit and is inhibited by the association of the deneddylated cullin subunit with TIP120A/CAND1 (By similarity). The functional specificity of the BCR complex depends on the BTB domain-containing protein as the susbstrate recognition component. BCR(SPOP) is involved in ubiquitination of BMI1/PCGF4, H2AFY and DAXX, and probably GLI2 or GLI3. BCR(KLHL9-KLHL13) controls the dynamic behavior of AURKB on mitotic chromosomes and thereby coordinates faithful mitotic progression and completion of cytokinesis. BCR(KLHL12) is involved in ER-Golgi transport by regulating the size of COPII coats, thereby playing a key role in collagen export, which is required for embryonic stem (ES) cells division: BCR(KLHL12) acts by mediating monoubiquitination of SEC31 (SEC31A or SEC31B). BCR(KLHL3) acts as a regulator of ion transport in the distal nephron; possibly by mediating ubiquitination of SLC12A3/NCC. Involved in ubiquitination of cyclin E and of cyclin D1 (in vitro) thus involved in regulation of G1/S transition.[2] [3] [4] [5] [6] [7] See AlsoReferences
|
|