6mcu: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of the holo retinal-bound domain-swapped dimer Q108K:T51D:A28H mutant of human Cellular Retinol Binding Protein II== | |||
<StructureSection load='6mcu' size='340' side='right'caption='[[6mcu]], [[Resolution|resolution]] 2.57Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[6mcu]] is a 12 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6MCU OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6MCU FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=RET:RETINAL'>RET</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6mcu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6mcu OCA], [http://pdbe.org/6mcu PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6mcu RCSB], [http://www.ebi.ac.uk/pdbsum/6mcu PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6mcu ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[[http://www.uniprot.org/uniprot/RET2_HUMAN RET2_HUMAN]] Intracellular transport of retinol. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Protein conformational switches or allosteric proteins play a key role in the regulation of many essential biological pathways. Nonetheless, the implementation of protein conformational switches in protein design applications has proven challenging, with only a few known examples that are not derivatives of naturally occurring allosteric systems. We have discovered that the domain swapped (DS) dimer of hCRBPII undergoes a large and robust conformational change upon retinal binding, making it a potentially powerful template for the design of protein conformational switches. Atomic resolution structures of the apo- and holo- forms illuminate a simple, mechanical mechanism involving sterically driven torsion angle flipping of two residues that drive the motion. We further demonstrate that the con-formational "readout" can be altered by addition of cross-domain disulfide bonds, also visualized at atomic resolution. Finally, as a proof of principle, we have created an allosteric metal binding site in the DS dimer, where ligand binding results in a reversible five-fold loss of metal binding affinity. The high resolution structure of the metal-bound variant illustrates a well-formed metal binding site at the inter-face of the two domains of the DS dimer, and confirms the design strategy for allosteric regulation. | |||
Engineering the hCRBPII domain-swapped dimer into a new class of protein switches.,Ghanbarpour A, Pinger C, Esmatpour Salmani R, Assar Z, Santos EM, Nosrati M, Pawlowski K, Spence D, Vasileiou C, Jin X, Borhan B, Geiger JH J Am Chem Soc. 2019 Sep 26. doi: 10.1021/jacs.9b04664. PMID:31557439<ref>PMID:31557439</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 6mcu" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Geiger, J]] | |||
[[Category: Ghanbarpour, A]] | [[Category: Ghanbarpour, A]] | ||
[[Category: | [[Category: Ilbp]] | ||
[[Category: Lipid binding protein]] | |||
[[Category: Protein switch]] |
Revision as of 08:54, 16 October 2019
Crystal structure of the holo retinal-bound domain-swapped dimer Q108K:T51D:A28H mutant of human Cellular Retinol Binding Protein IICrystal structure of the holo retinal-bound domain-swapped dimer Q108K:T51D:A28H mutant of human Cellular Retinol Binding Protein II
Structural highlights
Function[RET2_HUMAN] Intracellular transport of retinol. Publication Abstract from PubMedProtein conformational switches or allosteric proteins play a key role in the regulation of many essential biological pathways. Nonetheless, the implementation of protein conformational switches in protein design applications has proven challenging, with only a few known examples that are not derivatives of naturally occurring allosteric systems. We have discovered that the domain swapped (DS) dimer of hCRBPII undergoes a large and robust conformational change upon retinal binding, making it a potentially powerful template for the design of protein conformational switches. Atomic resolution structures of the apo- and holo- forms illuminate a simple, mechanical mechanism involving sterically driven torsion angle flipping of two residues that drive the motion. We further demonstrate that the con-formational "readout" can be altered by addition of cross-domain disulfide bonds, also visualized at atomic resolution. Finally, as a proof of principle, we have created an allosteric metal binding site in the DS dimer, where ligand binding results in a reversible five-fold loss of metal binding affinity. The high resolution structure of the metal-bound variant illustrates a well-formed metal binding site at the inter-face of the two domains of the DS dimer, and confirms the design strategy for allosteric regulation. Engineering the hCRBPII domain-swapped dimer into a new class of protein switches.,Ghanbarpour A, Pinger C, Esmatpour Salmani R, Assar Z, Santos EM, Nosrati M, Pawlowski K, Spence D, Vasileiou C, Jin X, Borhan B, Geiger JH J Am Chem Soc. 2019 Sep 26. doi: 10.1021/jacs.9b04664. PMID:31557439[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|