5b5e: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure analysis of Photosystem II complex== | ==Crystal structure analysis of Photosystem II complex== | ||
<StructureSection load='5b5e' size='340' side='right' caption='[[5b5e]], [[Resolution|resolution]] 1.87Å' scene=''> | <StructureSection load='5b5e' size='340' side='right'caption='[[5b5e]], [[Resolution|resolution]] 1.87Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5b5e]] is a 38 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermosynechococcus_vulcanus Thermosynechococcus vulcanus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5B5E OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5B5E FirstGlance]. <br> | <table><tr><td colspan='2'>[[5b5e]] is a 38 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermosynechococcus_vulcanus Thermosynechococcus vulcanus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5B5E OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5B5E FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BCR:BETA-CAROTENE'>BCR</scene>, <scene name='pdbligand=BCT:BICARBONATE+ION'>BCT</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=CLA:CHLOROPHYLL+A'>CLA</scene>, <scene name='pdbligand=DGD:DIGALACTOSYL+DIACYL+GLYCEROL+(DGDG)'>DGD</scene>, <scene name='pdbligand=DMS:DIMETHYL+SULFOXIDE'>DMS</scene>, <scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=HTG:HEPTYL+1-THIOHEXOPYRANOSIDE'>HTG</scene>, <scene name='pdbligand=LHG:1,2-DIPALMITOYL-PHOSPHATIDYL-GLYCEROLE'>LHG</scene>, <scene name='pdbligand=LMG:1,2-DISTEAROYL-MONOGALACTOSYL-DIGLYCERIDE'>LMG</scene>, <scene name='pdbligand=LMT:DODECYL-BETA-D-MALTOSIDE'>LMT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=OEX:CA-MN4-O5+CLUSTER'>OEX</scene>, <scene name='pdbligand=PHO:PHEOPHYTIN+A'>PHO</scene>, <scene name='pdbligand=PL9:2,3-DIMETHYL-5-(3,7,11,15,19,23,27,31,35-NONAMETHYL-2,6,10,14,18,22,26,30,34-HEXATRIACONTANONAENYL-2,5-CYCLOHEXADIENE-1,4-DIONE-2,3-DIMETHYL-5-SOLANESYL-1,4-BENZOQUINONE'>PL9</scene>, <scene name='pdbligand=RRX:(3R)-BETA,BETA-CAROTEN-3-OL'>RRX</scene>, <scene name='pdbligand=SQD:1,2-DI-O-ACYL-3-O-[6-DEOXY-6-SULFO-ALPHA-D-GLUCOPYRANOSYL]-SN-GLYCEROL'>SQD</scene>, <scene name='pdbligand=UNL:UNKNOWN+LIGAND'>UNL</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BCR:BETA-CAROTENE'>BCR</scene>, <scene name='pdbligand=BCT:BICARBONATE+ION'>BCT</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=CLA:CHLOROPHYLL+A'>CLA</scene>, <scene name='pdbligand=DGD:DIGALACTOSYL+DIACYL+GLYCEROL+(DGDG)'>DGD</scene>, <scene name='pdbligand=DMS:DIMETHYL+SULFOXIDE'>DMS</scene>, <scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=HEC:HEME+C'>HEC</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=HTG:HEPTYL+1-THIOHEXOPYRANOSIDE'>HTG</scene>, <scene name='pdbligand=LHG:1,2-DIPALMITOYL-PHOSPHATIDYL-GLYCEROLE'>LHG</scene>, <scene name='pdbligand=LMG:1,2-DISTEAROYL-MONOGALACTOSYL-DIGLYCERIDE'>LMG</scene>, <scene name='pdbligand=LMT:DODECYL-BETA-D-MALTOSIDE'>LMT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=OEX:CA-MN4-O5+CLUSTER'>OEX</scene>, <scene name='pdbligand=PHO:PHEOPHYTIN+A'>PHO</scene>, <scene name='pdbligand=PL9:2,3-DIMETHYL-5-(3,7,11,15,19,23,27,31,35-NONAMETHYL-2,6,10,14,18,22,26,30,34-HEXATRIACONTANONAENYL-2,5-CYCLOHEXADIENE-1,4-DIONE-2,3-DIMETHYL-5-SOLANESYL-1,4-BENZOQUINONE'>PL9</scene>, <scene name='pdbligand=RRX:(3R)-BETA,BETA-CAROTEN-3-OL'>RRX</scene>, <scene name='pdbligand=SQD:1,2-DI-O-ACYL-3-O-[6-DEOXY-6-SULFO-ALPHA-D-GLUCOPYRANOSYL]-SN-GLYCEROL'>SQD</scene>, <scene name='pdbligand=UNL:UNKNOWN+LIGAND'>UNL</scene></td></tr> | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=FME:N-FORMYLMETHIONINE'>FME</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=FME:N-FORMYLMETHIONINE'>FME</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5b66|5b66]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5b66|5b66]]</td></tr> | ||
Line 11: | Line 11: | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/ | [[http://www.uniprot.org/uniprot/PSBL_THEVL PSBL_THEVL]] This protein is a component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01317] [[http://www.uniprot.org/uniprot/YCF12_THEVL YCF12_THEVL]] A core subunit of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [[http://www.uniprot.org/uniprot/PSBB_THEVL PSBB_THEVL]] This protein binds multiple antenna chlorophylls and is part of the core of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [[http://www.uniprot.org/uniprot/PSBA_THEVL PSBA_THEVL]] D1 (PsbA) and D2 (PsbD) bind P680, the primary electron donor of photosystem II (PSII) as well as electron acceptors. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01379] [[http://www.uniprot.org/uniprot/PSBX_THEVL PSBX_THEVL]] Involved in the binding and/or turnover of quinones at the Q(B) site of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01386] [[http://www.uniprot.org/uniprot/CY550_THEVL CY550_THEVL]] Low-potential cytochrome c that plays a role in the oxygen-evolving complex of photosystem II (PSII). Binds to PSII in the absence of other extrinsic proteins; required for binding of the PsbU protein to photosystem II. In PSII particles without oxygen-evolving activity, maximal activity is restored only by binding of cytochrome c550, PsbU and the 33 kDa PsbO protein. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.<ref>PMID:1314738</ref> <ref>PMID:8382523</ref> [[http://www.uniprot.org/uniprot/PSBO_THEVL PSBO_THEVL]] Part of the oxygen-evolving complex associated with photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [[http://www.uniprot.org/uniprot/PSBF_THEVL PSBF_THEVL]] This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00643] [[http://www.uniprot.org/uniprot/PSBC_THEVL PSBC_THEVL]] This protein binds multiple antenna chlorophylls and is part of the core of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [[http://www.uniprot.org/uniprot/PSBJ_THEVL PSBJ_THEVL]] This protein is a component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01305] [[http://www.uniprot.org/uniprot/PSBM_THEVL PSBM_THEVL]] This protein is a component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00438] [[http://www.uniprot.org/uniprot/PSBT_THEVL PSBT_THEVL]] Seems to play a role in the dimerization of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00808] [[http://www.uniprot.org/uniprot/PSBU_THEVL PSBU_THEVL]] Stabilizes the structure of photosystem II (PSII) oxygen-evolving complex (OEC), the ion environment of oxygen evolution and protects the OEC against heat-induced inactivation. Requires cytochrome c-550 (PsbV) or OEC3 (PsbO) to bind to photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.<ref>PMID:1314738</ref> [[http://www.uniprot.org/uniprot/PSBI_THEVL PSBI_THEVL]] A component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01316] [[http://www.uniprot.org/uniprot/PSBD_THEVL PSBD_THEVL]] D1 (PsbA) and D2 (PsbD) bind P680, the primary electron donor of photosystem II (PSII) as well as electron acceptors. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. D2 is needed for assembly of a stable PSII complex.[HAMAP-Rule:MF_01383] [[http://www.uniprot.org/uniprot/PSBZ_THEVL PSBZ_THEVL]] Controls the interaction of photosystem II (PSII) cores with the light-harvesting antenna. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00644] [[http://www.uniprot.org/uniprot/PSBK_THEVL PSBK_THEVL]] This protein is a component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [[http://www.uniprot.org/uniprot/PSBE_THEVL PSBE_THEVL]] This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00642] | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 21: | Line 21: | ||
</div> | </div> | ||
<div class="pdbe-citations 5b5e" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 5b5e" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Cytochrome C 3D structures|Cytochrome C 3D structures]] | |||
*[[Photosystem II|Photosystem II]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | |||
[[Category: Photosystem II]] | [[Category: Photosystem II]] | ||
[[Category: Thermosynechococcus vulcanus]] | [[Category: Thermosynechococcus vulcanus]] |
Revision as of 08:49, 10 October 2019
Crystal structure analysis of Photosystem II complexCrystal structure analysis of Photosystem II complex
Structural highlights
Function[PSBL_THEVL] This protein is a component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01317] [YCF12_THEVL] A core subunit of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [PSBB_THEVL] This protein binds multiple antenna chlorophylls and is part of the core of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [PSBA_THEVL] D1 (PsbA) and D2 (PsbD) bind P680, the primary electron donor of photosystem II (PSII) as well as electron acceptors. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01379] [PSBX_THEVL] Involved in the binding and/or turnover of quinones at the Q(B) site of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01386] [CY550_THEVL] Low-potential cytochrome c that plays a role in the oxygen-evolving complex of photosystem II (PSII). Binds to PSII in the absence of other extrinsic proteins; required for binding of the PsbU protein to photosystem II. In PSII particles without oxygen-evolving activity, maximal activity is restored only by binding of cytochrome c550, PsbU and the 33 kDa PsbO protein. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[1] [2] [PSBO_THEVL] Part of the oxygen-evolving complex associated with photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [PSBF_THEVL] This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00643] [PSBC_THEVL] This protein binds multiple antenna chlorophylls and is part of the core of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [PSBJ_THEVL] This protein is a component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01305] [PSBM_THEVL] This protein is a component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00438] [PSBT_THEVL] Seems to play a role in the dimerization of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00808] [PSBU_THEVL] Stabilizes the structure of photosystem II (PSII) oxygen-evolving complex (OEC), the ion environment of oxygen evolution and protects the OEC against heat-induced inactivation. Requires cytochrome c-550 (PsbV) or OEC3 (PsbO) to bind to photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[3] [PSBI_THEVL] A component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01316] [PSBD_THEVL] D1 (PsbA) and D2 (PsbD) bind P680, the primary electron donor of photosystem II (PSII) as well as electron acceptors. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. D2 is needed for assembly of a stable PSII complex.[HAMAP-Rule:MF_01383] [PSBZ_THEVL] Controls the interaction of photosystem II (PSII) cores with the light-harvesting antenna. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00644] [PSBK_THEVL] This protein is a component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [PSBE_THEVL] This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00642] Publication Abstract from PubMedThe oxygen-evolving complex (OEC) forms the heart of photosystem II (PSII) in photosynthesis. The crystal structure of PSII from Thermosynechococcus vulcanus has been reported at a resolution of 1.9 A and at an averaged X-ray dose of 0.43 MGy. The OEC structure is suggested to be partially reduced to Mn(II) by EXAFS and DFT computational studies. Recently, the "radiation-damage-free" structures have been published at 1.95 A resolution using XFEL, but reports continued to appear that the OEC is reduced to the S0-state of the Kok cycle. To elucidate much more precise structure of the OEC, in this study two structures were determined at extremely low X-ray doses of 0.03 and 0.12 MGy using conventional synchrotron radiation source. The results indicated that the X-ray reduction effects on the OEC were very small in the low dose region below 0.12 MGy, that is, a threshold existed for the OEC structural changes caused by X-ray exposure. The OEC structures of the two identical monomers in the crystal were clearly different under the threshold of the radiation dose, although the surrounding polypeptide frameworks of PSII were the same. The assumption that the OECs in the crystal were in the dark-stable S1-state of the Kok cycle should be re-evaluated. Two Different Structures of the Oxygen-Evolving Complex in the Same Polypeptide Frameworks of Photosystem II.,Tanaka A, Fukushima Y, Kamiya N J Am Chem Soc. 2017 Jan 30. doi: 10.1021/jacs.6b09666. PMID:28102667[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|
Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)
OCA- Large Structures
- Photosystem II
- Thermosynechococcus vulcanus
- Fukushima, Y
- Kamiya, N
- Tanaka, A
- Calcium binding
- Chloride binding
- Electron transport
- Formylation
- Hydroxylation
- Iron binding
- Manganese binding
- Membrane complex
- Oxygen evolving
- Photosynthesis
- Photosystem
- Psii
- Thylakoid membrane
- Transmembrane alpha-helix
- Water splitting