4ub6: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Native structure of photosystem II (dataset-1) by a femtosecond X-ray laser== | ==Native structure of photosystem II (dataset-1) by a femtosecond X-ray laser== | ||
<StructureSection load='4ub6' size='340' side='right' caption='[[4ub6]], [[Resolution|resolution]] 1.95Å' scene=''> | <StructureSection load='4ub6' size='340' side='right'caption='[[4ub6]], [[Resolution|resolution]] 1.95Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4ub6]] is a 39 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermosynechococcus_vulcanus Thermosynechococcus vulcanus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4UB6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4UB6 FirstGlance]. <br> | <table><tr><td colspan='2'>[[4ub6]] is a 39 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermosynechococcus_vulcanus Thermosynechococcus vulcanus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4UB6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4UB6 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BCR:BETA-CAROTENE'>BCR</scene>, <scene name='pdbligand=BCT:BICARBONATE+ION'>BCT</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=CLA:CHLOROPHYLL+A'>CLA</scene>, <scene name='pdbligand=DGD:DIGALACTOSYL+DIACYL+GLYCEROL+(DGDG)'>DGD</scene>, <scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=HTG:HEPTYL+1-THIOHEXOPYRANOSIDE'>HTG</scene>, <scene name='pdbligand=LHG:1,2-DIPALMITOYL-PHOSPHATIDYL-GLYCEROLE'>LHG</scene>, <scene name='pdbligand=LMG:1,2-DISTEAROYL-MONOGALACTOSYL-DIGLYCERIDE'>LMG</scene>, <scene name='pdbligand=LMT:DODECYL-BETA-D-MALTOSIDE'>LMT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=OEX:CA-MN4-O5+CLUSTER'>OEX</scene>, <scene name='pdbligand=PHO:PHEOPHYTIN+A'>PHO</scene>, <scene name='pdbligand=PL9:2,3-DIMETHYL-5-(3,7,11,15,19,23,27,31,35-NONAMETHYL-2,6,10,14,18,22,26,30,34-HEXATRIACONTANONAENYL-2,5-CYCLOHEXADIENE-1,4-DIONE-2,3-DIMETHYL-5-SOLANESYL-1,4-BENZOQUINONE'>PL9</scene>, <scene name='pdbligand=SQD:1,2-DI-O-ACYL-3-O-[6-DEOXY-6-SULFO-ALPHA-D-GLUCOPYRANOSYL]-SN-GLYCEROL'>SQD</scene>, <scene name='pdbligand=UNL:UNKNOWN+LIGAND'>UNL</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BCR:BETA-CAROTENE'>BCR</scene>, <scene name='pdbligand=BCT:BICARBONATE+ION'>BCT</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=CLA:CHLOROPHYLL+A'>CLA</scene>, <scene name='pdbligand=DGD:DIGALACTOSYL+DIACYL+GLYCEROL+(DGDG)'>DGD</scene>, <scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HEC:HEME+C'>HEC</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=HTG:HEPTYL+1-THIOHEXOPYRANOSIDE'>HTG</scene>, <scene name='pdbligand=LHG:1,2-DIPALMITOYL-PHOSPHATIDYL-GLYCEROLE'>LHG</scene>, <scene name='pdbligand=LMG:1,2-DISTEAROYL-MONOGALACTOSYL-DIGLYCERIDE'>LMG</scene>, <scene name='pdbligand=LMT:DODECYL-BETA-D-MALTOSIDE'>LMT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=OEX:CA-MN4-O5+CLUSTER'>OEX</scene>, <scene name='pdbligand=PHO:PHEOPHYTIN+A'>PHO</scene>, <scene name='pdbligand=PL9:2,3-DIMETHYL-5-(3,7,11,15,19,23,27,31,35-NONAMETHYL-2,6,10,14,18,22,26,30,34-HEXATRIACONTANONAENYL-2,5-CYCLOHEXADIENE-1,4-DIONE-2,3-DIMETHYL-5-SOLANESYL-1,4-BENZOQUINONE'>PL9</scene>, <scene name='pdbligand=SQD:1,2-DI-O-ACYL-3-O-[6-DEOXY-6-SULFO-ALPHA-D-GLUCOPYRANOSYL]-SN-GLYCEROL'>SQD</scene>, <scene name='pdbligand=UNL:UNKNOWN+LIGAND'>UNL</scene></td></tr> | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=FME:N-FORMYLMETHIONINE'>FME</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=FME:N-FORMYLMETHIONINE'>FME</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4ub8|4ub8]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4ub8|4ub8]]</td></tr> | ||
Line 10: | Line 10: | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ub6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ub6 OCA], [http://pdbe.org/4ub6 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4ub6 RCSB], [http://www.ebi.ac.uk/pdbsum/4ub6 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4ub6 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ub6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ub6 OCA], [http://pdbe.org/4ub6 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4ub6 RCSB], [http://www.ebi.ac.uk/pdbsum/4ub6 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4ub6 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/PSBL_THEVL PSBL_THEVL]] This protein is a component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01317] [[http://www.uniprot.org/uniprot/YCF12_THEVL YCF12_THEVL]] A core subunit of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [[http://www.uniprot.org/uniprot/PSBB_THEVL PSBB_THEVL]] This protein binds multiple antenna chlorophylls and is part of the core of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [[http://www.uniprot.org/uniprot/PSBX_THEVL PSBX_THEVL]] Involved in the binding and/or turnover of quinones at the Q(B) site of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01386] [[http://www.uniprot.org/uniprot/CY550_THEVL CY550_THEVL]] Low-potential cytochrome c that plays a role in the oxygen-evolving complex of photosystem II (PSII). Binds to PSII in the absence of other extrinsic proteins; required for binding of the PsbU protein to photosystem II. In PSII particles without oxygen-evolving activity, maximal activity is restored only by binding of cytochrome c550, PsbU and the 33 kDa PsbO protein. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.<ref>PMID:1314738</ref> <ref>PMID:8382523</ref> [[http://www.uniprot.org/uniprot/PSBO_THEVL PSBO_THEVL]] Part of the oxygen-evolving complex associated with photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [[http://www.uniprot.org/uniprot/PSBF_THEVL PSBF_THEVL]] This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00643] [[http://www.uniprot.org/uniprot/PSBJ_THEVL PSBJ_THEVL]] This protein is a component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01305] [[http://www.uniprot.org/uniprot/PSBT_THEVL PSBT_THEVL]] Seems to play a role in the dimerization of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00808] [[http://www.uniprot.org/uniprot/PSBI_THEVL PSBI_THEVL]] A component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01316] [[http://www.uniprot.org/uniprot/PSBD_THEVL PSBD_THEVL]] D1 (PsbA) and D2 (PsbD) bind P680, the primary electron donor of photosystem II (PSII) as well as electron acceptors. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. D2 is needed for assembly of a stable PSII complex.[HAMAP-Rule:MF_01383] [[http://www.uniprot.org/uniprot/PSBZ_THEVL PSBZ_THEVL]] Controls the interaction of photosystem II (PSII) cores with the light-harvesting antenna. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00644] [[http://www.uniprot.org/uniprot/PSBE_THEVL PSBE_THEVL]] This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00642] | [[http://www.uniprot.org/uniprot/PSBL_THEVL PSBL_THEVL]] This protein is a component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01317] [[http://www.uniprot.org/uniprot/YCF12_THEVL YCF12_THEVL]] A core subunit of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [[http://www.uniprot.org/uniprot/PSBB_THEVL PSBB_THEVL]] This protein binds multiple antenna chlorophylls and is part of the core of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [[http://www.uniprot.org/uniprot/PSBX_THEVL PSBX_THEVL]] Involved in the binding and/or turnover of quinones at the Q(B) site of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01386] [[http://www.uniprot.org/uniprot/CY550_THEVL CY550_THEVL]] Low-potential cytochrome c that plays a role in the oxygen-evolving complex of photosystem II (PSII). Binds to PSII in the absence of other extrinsic proteins; required for binding of the PsbU protein to photosystem II. In PSII particles without oxygen-evolving activity, maximal activity is restored only by binding of cytochrome c550, PsbU and the 33 kDa PsbO protein. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.<ref>PMID:1314738</ref> <ref>PMID:8382523</ref> [[http://www.uniprot.org/uniprot/PSBO_THEVL PSBO_THEVL]] Part of the oxygen-evolving complex associated with photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [[http://www.uniprot.org/uniprot/PSBF_THEVL PSBF_THEVL]] This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00643] [[http://www.uniprot.org/uniprot/PSBJ_THEVL PSBJ_THEVL]] This protein is a component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01305] [[http://www.uniprot.org/uniprot/PSBT_THEVL PSBT_THEVL]] Seems to play a role in the dimerization of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00808] [[http://www.uniprot.org/uniprot/PSBI_THEVL PSBI_THEVL]] A component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01316] [[http://www.uniprot.org/uniprot/PSBD_THEVL PSBD_THEVL]] D1 (PsbA) and D2 (PsbD) bind P680, the primary electron donor of photosystem II (PSII) as well as electron acceptors. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. D2 is needed for assembly of a stable PSII complex.[HAMAP-Rule:MF_01383] [[http://www.uniprot.org/uniprot/PSBZ_THEVL PSBZ_THEVL]] Controls the interaction of photosystem II (PSII) cores with the light-harvesting antenna. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00644] [[http://www.uniprot.org/uniprot/PSBE_THEVL PSBE_THEVL]] This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00642] | ||
Line 22: | Line 21: | ||
</div> | </div> | ||
<div class="pdbe-citations 4ub6" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 4ub6" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Cytochrome C 3D structures|Cytochrome C 3D structures]] | |||
*[[Photosystem II|Photosystem II]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | |||
[[Category: Photosystem II]] | [[Category: Photosystem II]] | ||
[[Category: Thermosynechococcus vulcanus]] | [[Category: Thermosynechococcus vulcanus]] |
Revision as of 13:48, 2 October 2019
Native structure of photosystem II (dataset-1) by a femtosecond X-ray laserNative structure of photosystem II (dataset-1) by a femtosecond X-ray laser
Structural highlights
Function[PSBL_THEVL] This protein is a component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01317] [YCF12_THEVL] A core subunit of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [PSBB_THEVL] This protein binds multiple antenna chlorophylls and is part of the core of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [PSBX_THEVL] Involved in the binding and/or turnover of quinones at the Q(B) site of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01386] [CY550_THEVL] Low-potential cytochrome c that plays a role in the oxygen-evolving complex of photosystem II (PSII). Binds to PSII in the absence of other extrinsic proteins; required for binding of the PsbU protein to photosystem II. In PSII particles without oxygen-evolving activity, maximal activity is restored only by binding of cytochrome c550, PsbU and the 33 kDa PsbO protein. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[1] [2] [PSBO_THEVL] Part of the oxygen-evolving complex associated with photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. [PSBF_THEVL] This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00643] [PSBJ_THEVL] This protein is a component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01305] [PSBT_THEVL] Seems to play a role in the dimerization of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00808] [PSBI_THEVL] A component of the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01316] [PSBD_THEVL] D1 (PsbA) and D2 (PsbD) bind P680, the primary electron donor of photosystem II (PSII) as well as electron acceptors. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation. D2 is needed for assembly of a stable PSII complex.[HAMAP-Rule:MF_01383] [PSBZ_THEVL] Controls the interaction of photosystem II (PSII) cores with the light-harvesting antenna. PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00644] [PSBE_THEVL] This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_00642] Publication Abstract from PubMedPhotosynthesis converts light energy into biologically useful chemical energy vital to life on Earth. The initial reaction of photosynthesis takes place in photosystem II (PSII), a 700-kilodalton homodimeric membrane protein complex that catalyses photo-oxidation of water into dioxygen through an S-state cycle of the oxygen evolving complex (OEC). The structure of PSII has been solved by X-ray diffraction (XRD) at 1.9 angstrom resolution, which revealed that the OEC is a Mn4CaO5-cluster coordinated by a well defined protein environment. However, extended X-ray absorption fine structure (EXAFS) studies showed that the manganese cations in the OEC are easily reduced by X-ray irradiation, and slight differences were found in the Mn-Mn distances determined by XRD, EXAFS and theoretical studies. Here we report a 'radiation-damage-free' structure of PSII from Thermosynechococcus vulcanus in the S1 state at a resolution of 1.95 angstroms using femtosecond X-ray pulses of the SPring-8 angstrom compact free-electron laser (SACLA) and hundreds of large, highly isomorphous PSII crystals. Compared with the structure from XRD, the OEC in the X-ray free electron laser structure has Mn-Mn distances that are shorter by 0.1-0.2 angstroms. The valences of each manganese atom were tentatively assigned as Mn1D(III), Mn2C(IV), Mn3B(IV) and Mn4A(III), based on the average Mn-ligand distances and analysis of the Jahn-Teller axis on Mn(III). One of the oxo-bridged oxygens, O5, has significantly longer distances to Mn than do the other oxo-oxygen atoms, suggesting that O5 is a hydroxide ion instead of a normal oxygen dianion and therefore may serve as one of the substrate oxygen atoms. These findings provide a structural basis for the mechanism of oxygen evolution, and we expect that this structure will provide a blueprint for the design of artificial catalysts for water oxidation. Native structure of photosystem II at 1.95 A resolution viewed by femtosecond X-ray pulses.,Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Yamamoto M, Ago H, Shen JR Nature. 2015 Jan 1;517(7532):99-103. doi: 10.1038/nature13991. Epub 2014 Nov 26. PMID:25470056[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|