3i4l: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Structural characterization for the nucleotide binding ability of subunit A with AMP-PNP of the A1AO ATP synthase== | ==Structural characterization for the nucleotide binding ability of subunit A with AMP-PNP of the A1AO ATP synthase== | ||
<StructureSection load='3i4l' size='340' side='right' caption='[[3i4l]], [[Resolution|resolution]] 2.40Å' scene=''> | <StructureSection load='3i4l' size='340' side='right'caption='[[3i4l]], [[Resolution|resolution]] 2.40Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3i4l]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Pyrococcus_horikoshii Pyrococcus horikoshii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3I4L OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3I4L FirstGlance]. <br> | <table><tr><td colspan='2'>[[3i4l]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Pyrococcus_horikoshii Pyrococcus horikoshii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3I4L OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3I4L FirstGlance]. <br> | ||
Line 15: | Line 15: | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/i4/3i4l_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/i4/3i4l_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
Line 30: | Line 30: | ||
</div> | </div> | ||
<div class="pdbe-citations 3i4l" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 3i4l" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[ATPase 3D structures|ATPase 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | |||
[[Category: Pyrococcus horikoshii]] | [[Category: Pyrococcus horikoshii]] | ||
[[Category: Balakrishna, A M]] | [[Category: Balakrishna, A M]] |
Revision as of 19:30, 28 August 2019
Structural characterization for the nucleotide binding ability of subunit A with AMP-PNP of the A1AO ATP synthaseStructural characterization for the nucleotide binding ability of subunit A with AMP-PNP of the A1AO ATP synthase
Structural highlights
Function[VATA_PYRHO] Produces ATP from ADP in the presence of a proton gradient across the membrane. The archaeal alpha chain is a catalytic subunit. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structures of the nucleotide-empty (A(E)), 5'-adenylyl-beta,gamma-imidodiphosphate (A(PNP))-bound, and ADP (A(DP))-bound forms of the catalytic A subunit of the energy producer A(1)A(O) ATP synthase from Pyrococcus horikoshii OT3 have been solved at 2.47 A and 2.4 A resolutions. The structures provide novel features of nucleotide binding and depict the residues involved in the catalysis of the A subunit. In the A(E) form, the phosphate analog SO(4)(2-) binds, via a water molecule, to the phosphate binding loop (P-loop) residue Ser238, which is also involved in the phosphate binding of ADP and 5'-adenylyl-beta,gamma-imidodiphosphate. Together with amino acids Gly234 and Phe236, the serine residue stabilizes the arched P-loop conformation of subunit A, as shown by the 2.4-A structure of the mutant protein S238A in which the P-loop flips into a relaxed state, comparable to the one in catalytic beta subunits of F(1)F(O) ATP synthases. Superposition of the existing P-loop structures of ATPases emphasizes the unique P-loop in subunit A, which is also discussed in the light of an evolutionary P-loop switch in related A(1)A(O) ATP synthases, F(1)F(O) ATP synthases, and vacuolar ATPases and implicates diverse catalytic mechanisms inside these biological motors. Nucleotide binding states of subunit A of the A-ATP synthase and the implication of P-loop switch in evolution.,Kumar A, Manimekalai MS, Balakrishna AM, Jeyakanthan J, Gruber G J Mol Biol. 2010 Feb 19;396(2):301-20. Epub 2009 Nov 26. PMID:19944110[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|