6i2v: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='6i2v' size='340' side='right'caption='[[6i2v]], [[Resolution|resolution]] 1.75Å' scene=''> | <StructureSection load='6i2v' size='340' side='right'caption='[[6i2v]], [[Resolution|resolution]] 1.75Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6i2v]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6I2V OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6I2V FirstGlance]. <br> | <table><tr><td colspan='2'>[[6i2v]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_27562 Atcc 27562]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6I2V OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6I2V FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=1PE:PENTAETHYLENE+GLYCOL'>1PE</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=SO3:SULFITE+ION'>SO3</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=1PE:PENTAETHYLENE+GLYCOL'>1PE</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=SO3:SULFITE+ION'>SO3</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CRN52_08940, CRN59_22290, FORC17_1995, FORC36_0970 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=672 ATCC 27562])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6i2v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6i2v OCA], [http://pdbe.org/6i2v PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6i2v RCSB], [http://www.ebi.ac.uk/pdbsum/6i2v PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6i2v ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6i2v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6i2v OCA], [http://pdbe.org/6i2v PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6i2v RCSB], [http://www.ebi.ac.uk/pdbsum/6i2v PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6i2v ProSAT]</span></td></tr> | ||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The type II secretion system (T2SS) is a cell envelope-spanning macromolecular complex that is prevalent in Gram-negative bacterial species. It serves as the predominant virulence mechanism of many bacteria including those of the emerging human pathogens Vibrio vulnificus and Aeromonas hydrophila. The system is composed of a core set of highly conserved proteins that assemble an inner membrane platform, a periplasmic pseudopilus and an outer membrane complex termed the secretin. Localization and assembly of secretins in the outer membrane requires recognition of secretin monomers by two different partner systems: an inner membrane accessory complex or a highly sequence-diverse outer membrane lipoprotein, termed the pilotin. In this study, we addressed the question of differential secretin assembly mechanisms by using cryo-electron microscopy to determine the structures of the secretins from A. hydrophila (pilotin-independent ExeD) and V. vulnificus (pilotin-dependent EpsD). These structures, at approximately 3.5 A resolution, reveal pentadecameric stoichiometries and C-terminal regions that carry a signature motif in the case of a pilotin-dependent assembly mechanism. We solved the crystal structure of the V. vulnificus EpsS pilotin and confirmed the importance of the signature motif for pilotin-dependent secretin assembly by performing modelling with the C-terminus of EpsD. We also show that secretin assembly is essential for membrane integrity and toxin secretion in V. vulnificus and establish that EpsD requires the coordinated activity of both the accessory complex EpsAB and the pilotin EpsS for full assembly and T2SS function. In contrast, mutation of the region of the S-domain that is normally the site of pilotin interactions has little effect on assembly or function of the ExeD secretin. Since secretins are essential outer membrane channels present in a variety of secretion systems, these results provide a structural and functional basis for understanding the key assembly steps for different members of this vast pore-forming family of proteins. | |||
Structure and assembly of pilotin-dependent and -independent secretins of the type II secretion system.,Howard SP, Estrozi LF, Bertrand Q, Contreras-Martel C, Strozen T, Job V, Martins A, Fenel D, Schoehn G, Dessen A PLoS Pathog. 2019 May 13;15(5):e1007731. doi: 10.1371/journal.ppat.1007731., eCollection 2019 May. PMID:31083688<ref>PMID:31083688</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 6i2v" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Atcc 27562]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Bertrand, Q]] | [[Category: Bertrand, Q]] |
Revision as of 18:55, 28 August 2019
Pilotin from Vibrio vulnificus type 2 secretion system, EpsS.Pilotin from Vibrio vulnificus type 2 secretion system, EpsS.
Structural highlights
Publication Abstract from PubMedThe type II secretion system (T2SS) is a cell envelope-spanning macromolecular complex that is prevalent in Gram-negative bacterial species. It serves as the predominant virulence mechanism of many bacteria including those of the emerging human pathogens Vibrio vulnificus and Aeromonas hydrophila. The system is composed of a core set of highly conserved proteins that assemble an inner membrane platform, a periplasmic pseudopilus and an outer membrane complex termed the secretin. Localization and assembly of secretins in the outer membrane requires recognition of secretin monomers by two different partner systems: an inner membrane accessory complex or a highly sequence-diverse outer membrane lipoprotein, termed the pilotin. In this study, we addressed the question of differential secretin assembly mechanisms by using cryo-electron microscopy to determine the structures of the secretins from A. hydrophila (pilotin-independent ExeD) and V. vulnificus (pilotin-dependent EpsD). These structures, at approximately 3.5 A resolution, reveal pentadecameric stoichiometries and C-terminal regions that carry a signature motif in the case of a pilotin-dependent assembly mechanism. We solved the crystal structure of the V. vulnificus EpsS pilotin and confirmed the importance of the signature motif for pilotin-dependent secretin assembly by performing modelling with the C-terminus of EpsD. We also show that secretin assembly is essential for membrane integrity and toxin secretion in V. vulnificus and establish that EpsD requires the coordinated activity of both the accessory complex EpsAB and the pilotin EpsS for full assembly and T2SS function. In contrast, mutation of the region of the S-domain that is normally the site of pilotin interactions has little effect on assembly or function of the ExeD secretin. Since secretins are essential outer membrane channels present in a variety of secretion systems, these results provide a structural and functional basis for understanding the key assembly steps for different members of this vast pore-forming family of proteins. Structure and assembly of pilotin-dependent and -independent secretins of the type II secretion system.,Howard SP, Estrozi LF, Bertrand Q, Contreras-Martel C, Strozen T, Job V, Martins A, Fenel D, Schoehn G, Dessen A PLoS Pathog. 2019 May 13;15(5):e1007731. doi: 10.1371/journal.ppat.1007731., eCollection 2019 May. PMID:31083688[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|