3nbt: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of trimeric cytochrome c from horse heart== | ==Crystal structure of trimeric cytochrome c from horse heart== | ||
<StructureSection load='3nbt' size='340' side='right' caption='[[3nbt]], [[Resolution|resolution]] 2.10Å' scene=''> | <StructureSection load='3nbt' size='340' side='right'caption='[[3nbt]], [[Resolution|resolution]] 2.10Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3nbt]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Equus_caballus Equus caballus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3NBT OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3NBT FirstGlance]. <br> | <table><tr><td colspan='2'>[[3nbt]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Equus_caballus Equus caballus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3NBT OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3NBT FirstGlance]. <br> | ||
Line 14: | Line 14: | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/nb/3nbt_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/nb/3nbt_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
Line 29: | Line 29: | ||
</div> | </div> | ||
<div class="pdbe-citations 3nbt" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 3nbt" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Cytochrome C 3D structures|Cytochrome C 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
Line 34: | Line 37: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Equus caballus]] | [[Category: Equus caballus]] | ||
[[Category: Large Structures]] | |||
[[Category: Higuchi, Y]] | [[Category: Higuchi, Y]] | ||
[[Category: Hirota, S]] | [[Category: Hirota, S]] |
Revision as of 20:48, 14 August 2019
Crystal structure of trimeric cytochrome c from horse heartCrystal structure of trimeric cytochrome c from horse heart
Structural highlights
Function[CYC_HORSE] Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain. Plays a role in apoptosis. Suppression of the anti-apoptotic members or activation of the pro-apoptotic members of the Bcl-2 family leads to altered mitochondrial membrane permeability resulting in release of cytochrome c into the cytosol. Binding of cytochrome c to Apaf-1 triggers the activation of caspase-9, which then accelerates apoptosis by activating other caspases (By similarity). Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCytochrome c (cyt c) is a stable protein that functions in a monomeric state as an electron donor for cytochrome c oxidase. It is also released to the cytosol when permeabilization of the mitochondrial outer membrane occurs at the early stage of apoptosis. For nearly half a century, it has been known that cyt c forms polymers, but the polymerization mechanism remains unknown. We found that cyt c forms polymers by successive domain swapping, where the C-terminal helix is displaced from its original position in the monomer and Met-heme coordination is perturbed significantly. In the crystal structures of dimeric and trimeric cyt c, the C-terminal helices are replaced by the corresponding domain of other cyt c molecules and Met80 is dissociated from the heme. The solution structures of dimeric, trimeric, and tetrameric cyt c were linear based on small-angle X-ray scattering measurements, where the trimeric linear structure shifted toward the cyclic structure by addition of PEG and (NH(4))(2)HPO(4). The absorption and CD spectra of high-order oligomers ( approximately 40 mer) were similar to those of dimeric and trimeric cyt c but different from those of monomeric cyt c. For dimeric, trimeric, and tetrameric cyt c, the DeltaH of the oligomer dissociation to monomers was estimated to be about -20 kcal/mol per protomer unit, where Met-heme coordination appears to contribute largely to DeltaH. The present results suggest that cyt c polymerization occurs by successive domain swapping, which may be a common mechanism of protein polymerization. Cytochrome c polymerization by successive domain swapping at the C-terminal helix.,Hirota S, Hattori Y, Nagao S, Taketa M, Komori H, Kamikubo H, Wang Z, Takahashi I, Negi S, Sugiura Y, Kataoka M, Higuchi Y Proc Natl Acad Sci U S A. 2010 Jul 6. PMID:20615990[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|