1n1q: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of a Dps protein from Bacillus brevis== | ==Crystal structure of a Dps protein from Bacillus brevis== | ||
<StructureSection load='1n1q' size='340' side='right' caption='[[1n1q]], [[Resolution|resolution]] 2.20Å' scene=''> | <StructureSection load='1n1q' size='340' side='right'caption='[[1n1q]], [[Resolution|resolution]] 2.20Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1n1q]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_8246 Atcc 8246]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1N1Q OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1N1Q FirstGlance]. <br> | <table><tr><td colspan='2'>[[1n1q]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_8246 Atcc 8246]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1N1Q OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1N1Q FirstGlance]. <br> | ||
Line 11: | Line 11: | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/n1/1n1q_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/n1/1n1q_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
Line 26: | Line 26: | ||
</div> | </div> | ||
<div class="pdbe-citations 1n1q" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 1n1q" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Ferritin 3D structures|Ferritin 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
Line 31: | Line 34: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Atcc 8246]] | [[Category: Atcc 8246]] | ||
[[Category: Large Structures]] | |||
[[Category: Asami, O]] | [[Category: Asami, O]] | ||
[[Category: Kajino, T]] | [[Category: Kajino, T]] |
Revision as of 16:39, 17 July 2019
Crystal structure of a Dps protein from Bacillus brevisCrystal structure of a Dps protein from Bacillus brevis
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystallization of cellular components represents a unique survival strategy for bacterial cells under stressed conditions. A highly ordered, layered structure is often formed in such a process, which may involve one or more than one type of bio-macromolecules. The main advantage of biocrystallization has been attributed to the fact that it is a physical process and thus is independent of energy consumption. Dps is a protein that crystallizes to form a multi-layered structure in starved cells in order to protect DNA against oxidative damage and other detrimental factors. The multi-layered crystal structure of a Dps protein from Bacillus brevis has been revealed for the first time at atomic resolution in the absence of DNA. Inspection of the structure provides the first direct evidence for the existence of a di-nuclear ferroxidase center, which possesses unique features among all the di-iron proteins identified so far. It constitutes the structural basis for the ferroxidase activity of Dps in the crystalline state as well as in solution. This finding proves that the enzymatic process of detoxification of metal ions, which may cause severe oxidative damage to DNA, is the other important aspect of the defense mechanism performed by Dps. In the multi-layered structure, Dps dodecamers are organized in a highly ordered manner. They adopt the classic form of hexagonal packing in each layer of the structure. Such arrangement results in reinforced structural features that would facilitate the attraction and absorption of metal ions from the environment. The highly ordered layered structure may provide an ideal basis for the accommodation of DNA between the layers so that it can be isolated and protected from harmful factors under stress conditions. The multi-layered structure of Dps with a novel di-nuclear ferroxidase center.,Ren B, Tibbelin G, Kajino T, Asami O, Ladenstein R J Mol Biol. 2003 Jun 6;329(3):467-77. PMID:12767829[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|