6hr5: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='6hr5' size='340' side='right'caption='[[6hr5]], [[Resolution|resolution]] 2.91&Aring;' scene=''>
<StructureSection load='6hr5' size='340' side='right'caption='[[6hr5]], [[Resolution|resolution]] 2.91&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[6hr5]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6HR5 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6HR5 FirstGlance]. <br>
<table><tr><td colspan='2'>[[6hr5]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Bacteroidetes_bacterium_kmm_3901 Bacteroidetes bacterium kmm 3901]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6HR5 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6HR5 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">BN863_22250 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1347342 Bacteroidetes bacterium KMM 3901])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6hr5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6hr5 OCA], [http://pdbe.org/6hr5 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6hr5 RCSB], [http://www.ebi.ac.uk/pdbsum/6hr5 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6hr5 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6hr5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6hr5 OCA], [http://pdbe.org/6hr5 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6hr5 RCSB], [http://www.ebi.ac.uk/pdbsum/6hr5 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6hr5 ProSAT]</span></td></tr>
</table>
</table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Marine seaweeds increasingly grow into extensive algal blooms, which are detrimental to coastal ecosystems, tourism and aquaculture. However, algal biomass is also emerging as a sustainable raw material for the bioeconomy. The potential exploitation of algae is hindered by our limited knowledge of the microbial pathways-and hence the distinct biochemical functions of the enzymes involved-that convert algal polysaccharides into oligo- and monosaccharides. Understanding these processes would be essential, however, for applications such as the fermentation of algal biomass into bioethanol or other value-added compounds. Here, we describe the metabolic pathway that enables the marine flavobacterium Formosa agariphila to degrade ulvan, the main cell wall polysaccharide of bloom-forming Ulva species. The pathway involves 12 biochemically characterized carbohydrate-active enzymes, including two polysaccharide lyases, three sulfatases and seven glycoside hydrolases that sequentially break down ulvan into fermentable monosaccharides. This way, the enzymes turn a previously unexploited renewable into a valuable and ecologically sustainable bioresource.
A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan.,Reisky L, Prechoux A, Zuhlke MK, Baumgen M, Robb CS, Gerlach N, Roret T, Stanetty C, Larocque R, Michel G, Song T, Markert S, Unfried F, Mihovilovic MD, Trautwein-Schult A, Becher D, Schweder T, Bornscheuer UT, Hehemann JH Nat Chem Biol. 2019 Jul 8. pii: 10.1038/s41589-019-0311-9. doi:, 10.1038/s41589-019-0311-9. PMID:31285597<ref>PMID:31285597</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6hr5" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Bacteroidetes bacterium kmm 3901]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Czjzek, M]]
[[Category: Czjzek, M]]

Latest revision as of 15:33, 17 July 2019

Structure of the S1_25 family sulfatase module of the rhamnosidase FA22250 from Formosa agariphilaStructure of the S1_25 family sulfatase module of the rhamnosidase FA22250 from Formosa agariphila

Structural highlights

6hr5 is a 1 chain structure with sequence from Bacteroidetes bacterium kmm 3901. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:BN863_22250 (Bacteroidetes bacterium KMM 3901)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Marine seaweeds increasingly grow into extensive algal blooms, which are detrimental to coastal ecosystems, tourism and aquaculture. However, algal biomass is also emerging as a sustainable raw material for the bioeconomy. The potential exploitation of algae is hindered by our limited knowledge of the microbial pathways-and hence the distinct biochemical functions of the enzymes involved-that convert algal polysaccharides into oligo- and monosaccharides. Understanding these processes would be essential, however, for applications such as the fermentation of algal biomass into bioethanol or other value-added compounds. Here, we describe the metabolic pathway that enables the marine flavobacterium Formosa agariphila to degrade ulvan, the main cell wall polysaccharide of bloom-forming Ulva species. The pathway involves 12 biochemically characterized carbohydrate-active enzymes, including two polysaccharide lyases, three sulfatases and seven glycoside hydrolases that sequentially break down ulvan into fermentable monosaccharides. This way, the enzymes turn a previously unexploited renewable into a valuable and ecologically sustainable bioresource.

A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan.,Reisky L, Prechoux A, Zuhlke MK, Baumgen M, Robb CS, Gerlach N, Roret T, Stanetty C, Larocque R, Michel G, Song T, Markert S, Unfried F, Mihovilovic MD, Trautwein-Schult A, Becher D, Schweder T, Bornscheuer UT, Hehemann JH Nat Chem Biol. 2019 Jul 8. pii: 10.1038/s41589-019-0311-9. doi:, 10.1038/s41589-019-0311-9. PMID:31285597[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Reisky L, Prechoux A, Zuhlke MK, Baumgen M, Robb CS, Gerlach N, Roret T, Stanetty C, Larocque R, Michel G, Song T, Markert S, Unfried F, Mihovilovic MD, Trautwein-Schult A, Becher D, Schweder T, Bornscheuer UT, Hehemann JH. A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan. Nat Chem Biol. 2019 Jul 8. pii: 10.1038/s41589-019-0311-9. doi:, 10.1038/s41589-019-0311-9. PMID:31285597 doi:http://dx.doi.org/10.1038/s41589-019-0311-9

6hr5, resolution 2.91Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA