6og3: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/CLPB_ECOLI CLPB_ECOLI]] Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK.<ref>PMID:10982797</ref> <ref>PMID:12624113</ref> <ref>PMID:14640692</ref>   
[[http://www.uniprot.org/uniprot/CLPB_ECOLI CLPB_ECOLI]] Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK.<ref>PMID:10982797</ref> <ref>PMID:12624113</ref> <ref>PMID:14640692</ref>   
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Bacterial ClpB and yeast Hsp104 are homologous Hsp100 protein disaggregases that serve critical functions in proteostasis by solubilizing protein aggregates. Two AAA+ nucleotide binding domains (NBDs) power polypeptide translocation through a central channel comprised of a hexameric spiral of protomers that contact substrate via conserved pore-loop interactions. Here we report cryo-EM structures of a hyperactive ClpB variant bound to the model substrate, casein in the presence of slowly hydrolysable ATPgammaS, which reveal the translocation mechanism. Distinct substrate-gripping interactions are identified for NBD1 and NBD2 pore loops. A trimer of N-terminal domains define a channel entrance that binds the polypeptide substrate adjacent to the topmost NBD1 contact. NBD conformations at the seam interface reveal how ATP hydrolysis-driven substrate disengagement and re-binding are precisely tuned to drive a directional, stepwise translocation cycle.
Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase.,Rizo AN, Lin J, Gates SN, Tse E, Bart SM, Castellano LM, DiMaio F, Shorter J, Southworth DR Nat Commun. 2019 Jun 3;10(1):2393. doi: 10.1038/s41467-019-10150-y. PMID:31160557<ref>PMID:31160557</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6og3" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>

Revision as of 09:37, 19 June 2019

Focus classification structure of the hyperactive ClpB mutant K476C, bound to casein, NTD-trimerFocus classification structure of the hyperactive ClpB mutant K476C, bound to casein, NTD-trimer

Structural highlights

6og3 is a 4 chain structure with sequence from [1] and Bos taurus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
NonStd Res:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[CLPB_ECOLI] Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK.[1] [2] [3]

Publication Abstract from PubMed

Bacterial ClpB and yeast Hsp104 are homologous Hsp100 protein disaggregases that serve critical functions in proteostasis by solubilizing protein aggregates. Two AAA+ nucleotide binding domains (NBDs) power polypeptide translocation through a central channel comprised of a hexameric spiral of protomers that contact substrate via conserved pore-loop interactions. Here we report cryo-EM structures of a hyperactive ClpB variant bound to the model substrate, casein in the presence of slowly hydrolysable ATPgammaS, which reveal the translocation mechanism. Distinct substrate-gripping interactions are identified for NBD1 and NBD2 pore loops. A trimer of N-terminal domains define a channel entrance that binds the polypeptide substrate adjacent to the topmost NBD1 contact. NBD conformations at the seam interface reveal how ATP hydrolysis-driven substrate disengagement and re-binding are precisely tuned to drive a directional, stepwise translocation cycle.

Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase.,Rizo AN, Lin J, Gates SN, Tse E, Bart SM, Castellano LM, DiMaio F, Shorter J, Southworth DR Nat Commun. 2019 Jun 3;10(1):2393. doi: 10.1038/s41467-019-10150-y. PMID:31160557[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Barnett ME, Zolkiewska A, Zolkiewski M. Structure and activity of ClpB from Escherichia coli. Role of the amino-and -carboxyl-terminal domains. J Biol Chem. 2000 Dec 1;275(48):37565-71. PMID:10982797 doi:http://dx.doi.org/10.1074/jbc.M005211200
  2. Mogk A, Schlieker C, Strub C, Rist W, Weibezahn J, Bukau B. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. J Biol Chem. 2003 May 16;278(20):17615-24. Epub 2003 Mar 6. PMID:12624113 doi:http://dx.doi.org/10.1074/jbc.M209686200
  3. Kedzierska S, Akoev V, Barnett ME, Zolkiewski M. Structure and function of the middle domain of ClpB from Escherichia coli. Biochemistry. 2003 Dec 9;42(48):14242-8. PMID:14640692 doi:http://dx.doi.org/10.1021/bi035573d
  4. Rizo AN, Lin J, Gates SN, Tse E, Bart SM, Castellano LM, DiMaio F, Shorter J, Southworth DR. Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase. Nat Commun. 2019 Jun 3;10(1):2393. doi: 10.1038/s41467-019-10150-y. PMID:31160557 doi:http://dx.doi.org/10.1038/s41467-019-10150-y

6og3, resolution 4.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA