5luh: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:


==AadA E87Q in complex with ATP, calcium and streptomycin==
==AadA E87Q in complex with ATP, calcium and streptomycin==
<StructureSection load='5luh' size='340' side='right' caption='[[5luh]], [[Resolution|resolution]] 1.73&Aring;' scene=''>
<StructureSection load='5luh' size='340' side='right'caption='[[5luh]], [[Resolution|resolution]] 1.73&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5luh]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5LUH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5LUH FirstGlance]. <br>
<table><tr><td colspan='2'>[[5luh]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_typhimurium"_loeffler_1892 "bacillus typhimurium" loeffler 1892]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5LUH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5LUH FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=SRY:STREPTOMYCIN'>SRY</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=SRY:STREPTOMYCIN'>SRY</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CME:S,S-(2-HYDROXYETHYL)THIOCYSTEINE'>CME</scene>, <scene name='pdbligand=CSS:S-MERCAPTOCYSTEINE'>CSS</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CME:S,S-(2-HYDROXYETHYL)THIOCYSTEINE'>CME</scene>, <scene name='pdbligand=CSS:S-MERCAPTOCYSTEINE'>CSS</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5lpa|5lpa]], [[4cs6|4cs6]], [[5g4a|5g4a]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5lpa|5lpa]], [[4cs6|4cs6]], [[5g4a|5g4a]]</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">aadA, STM1264 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=90371 "Bacillus typhimurium" Loeffler 1892])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Streptomycin_3''-adenylyltransferase Streptomycin 3''-adenylyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.47 2.7.7.47] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Streptomycin_3''-adenylyltransferase Streptomycin 3''-adenylyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.47 2.7.7.47] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5luh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5luh OCA], [http://pdbe.org/5luh PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5luh RCSB], [http://www.ebi.ac.uk/pdbsum/5luh PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5luh ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5luh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5luh OCA], [http://pdbe.org/5luh PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5luh RCSB], [http://www.ebi.ac.uk/pdbsum/5luh PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5luh ProSAT]</span></td></tr>
Line 12: Line 13:
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Aminoglycoside resistance is commonly conferred by enzymatic modification of drugs by aminoglycoside-modifying enzymes such as aminoglycoside nucleotidyltransferases (ANTs). Here, the first crystal structure of an ANT(3'')(9) adenyltransferase, AadA from Salmonella enterica, is presented. AadA catalyses the magnesium-dependent transfer of adenosine monophosphate from ATP to the two chemically dissimilar drugs streptomycin and spectinomycin. The structure was solved using selenium SAD phasing and refined to 2.5 A resolution. AadA consists of a nucleotidyltransferase domain and an alpha-helical bundle domain. AadA crystallizes as a monomer and is a monomer in solution as confirmed by small-angle X-ray scattering, in contrast to structurally similar homodimeric adenylating enzymes such as kanamycin nucleotidyltransferase. Isothermal titration calorimetry experiments show that ATP binding has to occur before binding of the aminoglycoside substrate, and structure analysis suggests that ATP binding repositions the two domains for aminoglycoside binding in the interdomain cleft. Candidate residues for ligand binding and catalysis were subjected to site-directed mutagenesis. In vivo resistance and in vitro binding assays support the role of Glu87 as the catalytic base in adenylation, while Arg192 and Lys205 are shown to be critical for ATP binding.
Streptomycin and spectinomycin are antibiotics that bind to the bacterial ribosome and perturb protein synthesis. The clinically most prevalent bacterial resistance mechanism is their chemical modification by aminoglycoside-modifying enzymes such as aminoglycoside nucleotidyltransferases (ANTs). AadA from Salmonella enterica is an aminoglycoside (3'')(9) adenylyl transferase that O-adenylates position 3" of streptomycin and position 9 of spectinomycin. We previously reported the apo AadA structure with a closed active site. To clarify how AadA binds ATP and its two chemically distinct drug substrates, we here report crystal structures of wildtype AadA complexed with ATP, magnesium, and streptomycin and of an active-site mutant, E87Q, complexed with ATP and streptomycin or the closely related dihydrostreptomycin. These structures revealed that ATP binding induces a conformational change that positions the two domains for drug binding at the interdomain cleft and disclosed the interactions between both domains and the three rings of streptomycin. Spectinomycin docking followed by molecular dynamics simulations suggested that despite the limited structural similarities with streptomycin, spectinomycin makes similar interactions around the modification site, and, in agreement with mutational data, critically interacts with fewer residues. Using structure-guided sequence analyses of ANT(3")(9) enzymes acting on both substrates and ANT(9) enzymes active only on spectinomycin, we identified sequence determinants for activity on each substrate. We experimentally confirmed that Trp-173 and Asp-178 are essential only for streptomycin resistance. Activity assays indicated that Glu-87 is the catalytic base in AadA and that the non-adenylating E87Q mutant can hydrolyze ATP in the presence of streptomycin.


Structure of AadA from Salmonella enterica: a monomeric aminoglycoside (3'')(9) adenyltransferase.,Chen Y, Nasvall J, Wu S, Andersson DI, Selmer M Acta Crystallogr D Biol Crystallogr. 2015 Nov 1;71(Pt 11):2267-77. doi:, 10.1107/S1399004715016429. Epub 2015 Oct 31. PMID:26527143<ref>PMID:26527143</ref>
Structural mechanism of AadA, a dual specificity aminoglycoside adenyl transferase from Salmonella enterica.,Stern AL, Van der Verren SE, Kanchugal P S, Nasvall J, Gutierrez de Teran H, Selmer M J Biol Chem. 2018 Jun 5. pii: RA118.003989. doi: 10.1074/jbc.RA118.003989. PMID:29871922<ref>PMID:29871922</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Line 23: Line 24:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Bacillus typhimurium loeffler 1892]]
[[Category: Large Structures]]
[[Category: Streptomycin 3''-adenylyltransferase]]
[[Category: Streptomycin 3''-adenylyltransferase]]
[[Category: Selmer, M]]
[[Category: Selmer, M]]

Revision as of 09:01, 12 June 2019

AadA E87Q in complex with ATP, calcium and streptomycinAadA E87Q in complex with ATP, calcium and streptomycin

Structural highlights

5luh is a 2 chain structure with sequence from "bacillus_typhimurium"_loeffler_1892 "bacillus typhimurium" loeffler 1892. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , , ,
NonStd Res:,
Gene:aadA, STM1264 ("Bacillus typhimurium" Loeffler 1892)
Activity:-adenylyltransferase Streptomycin 3-adenylyltransferase, with EC number 2.7.7.47
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Streptomycin and spectinomycin are antibiotics that bind to the bacterial ribosome and perturb protein synthesis. The clinically most prevalent bacterial resistance mechanism is their chemical modification by aminoglycoside-modifying enzymes such as aminoglycoside nucleotidyltransferases (ANTs). AadA from Salmonella enterica is an aminoglycoside (3)(9) adenylyl transferase that O-adenylates position 3" of streptomycin and position 9 of spectinomycin. We previously reported the apo AadA structure with a closed active site. To clarify how AadA binds ATP and its two chemically distinct drug substrates, we here report crystal structures of wildtype AadA complexed with ATP, magnesium, and streptomycin and of an active-site mutant, E87Q, complexed with ATP and streptomycin or the closely related dihydrostreptomycin. These structures revealed that ATP binding induces a conformational change that positions the two domains for drug binding at the interdomain cleft and disclosed the interactions between both domains and the three rings of streptomycin. Spectinomycin docking followed by molecular dynamics simulations suggested that despite the limited structural similarities with streptomycin, spectinomycin makes similar interactions around the modification site, and, in agreement with mutational data, critically interacts with fewer residues. Using structure-guided sequence analyses of ANT(3")(9) enzymes acting on both substrates and ANT(9) enzymes active only on spectinomycin, we identified sequence determinants for activity on each substrate. We experimentally confirmed that Trp-173 and Asp-178 are essential only for streptomycin resistance. Activity assays indicated that Glu-87 is the catalytic base in AadA and that the non-adenylating E87Q mutant can hydrolyze ATP in the presence of streptomycin.

Structural mechanism of AadA, a dual specificity aminoglycoside adenyl transferase from Salmonella enterica.,Stern AL, Van der Verren SE, Kanchugal P S, Nasvall J, Gutierrez de Teran H, Selmer M J Biol Chem. 2018 Jun 5. pii: RA118.003989. doi: 10.1074/jbc.RA118.003989. PMID:29871922[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Stern AL, Van der Verren SE, Kanchugal P S, Nasvall J, Gutierrez de Teran H, Selmer M. Structural mechanism of AadA, a dual specificity aminoglycoside adenyl transferase from Salmonella enterica. J Biol Chem. 2018 Jun 5. pii: RA118.003989. doi: 10.1074/jbc.RA118.003989. PMID:29871922 doi:http://dx.doi.org/10.1074/jbc.RA118.003989

5luh, resolution 1.73Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA