4y2r: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Structure of soluble epoxide hydrolase in complex with 2-(piperazin-1-yl)nicotinonitrile== | ==Structure of soluble epoxide hydrolase in complex with 2-(piperazin-1-yl)nicotinonitrile== | ||
<StructureSection load='4y2r' size='340' side='right' caption='[[4y2r]], [[Resolution|resolution]] 2.45Å' scene=''> | <StructureSection load='4y2r' size='340' side='right'caption='[[4y2r]], [[Resolution|resolution]] 2.45Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4y2r]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4Y2R OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4Y2R FirstGlance]. <br> | <table><tr><td colspan='2'>[[4y2r]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4Y2R OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4Y2R FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=49O:2-(PIPERAZIN-1-YL)PYRIDINE-3-CARBONITRILE'>49O</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=49O:2-(PIPERAZIN-1-YL)PYRIDINE-3-CARBONITRILE'>49O</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4y2j|4y2j]], [[4y2p|4y2p]], [[4y2q|4y2q]], [[4y2s|4y2s]], [[4y2t|4y2t]], [[4y2u|4y2u]], [[4y2v|4y2v]], [[4y2x|4y2x]], [[4y2y|4y2y]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4y2j|4y2j]], [[4y2p|4y2p]], [[4y2q|4y2q]], [[4y2s|4y2s]], [[4y2t|4y2t]], [[4y2u|4y2u]], [[4y2v|4y2v]], [[4y2x|4y2x]], [[4y2y|4y2y]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">EPHX2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Soluble_epoxide_hydrolase Soluble epoxide hydrolase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.3.2.10 3.3.2.10] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Soluble_epoxide_hydrolase Soluble epoxide hydrolase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.3.2.10 3.3.2.10] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4y2r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4y2r OCA], [http://pdbe.org/4y2r PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4y2r RCSB], [http://www.ebi.ac.uk/pdbsum/4y2r PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4y2r ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4y2r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4y2r OCA], [http://pdbe.org/4y2r PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4y2r RCSB], [http://www.ebi.ac.uk/pdbsum/4y2r PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4y2r ProSAT]</span></td></tr> | ||
Line 27: | Line 28: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Human]] | |||
[[Category: Large Structures]] | |||
[[Category: Soluble epoxide hydrolase]] | [[Category: Soluble epoxide hydrolase]] | ||
[[Category: Amano, Y]] | [[Category: Amano, Y]] |
Revision as of 02:42, 6 June 2019
Structure of soluble epoxide hydrolase in complex with 2-(piperazin-1-yl)nicotinonitrileStructure of soluble epoxide hydrolase in complex with 2-(piperazin-1-yl)nicotinonitrile
Structural highlights
Function[HYES_HUMAN] Bifunctional enzyme. The C-terminal domain has epoxide hydrolase activity and acts on epoxides (alkene oxides, oxiranes) and arene oxides. Plays a role in xenobiotic metabolism by degrading potentially toxic epoxides. Also determines steady-state levels of physiological mediators. The N-terminal domain has lipid phosphatase activity, with the highest activity towards threo-9,10-phosphonooxy-hydroxy-octadecanoic acid, followed by erythro-9,10-phosphonooxy-hydroxy-octadecanoic acid, 12-phosphonooxy-octadec-9Z-enoic acid, 12-phosphonooxy-octadec-9E-enoic acid, and p-nitrophenyl phospate.[1] [2] Publication Abstract from PubMedSoluble epoxide hydrolase (sEH) is a potential target for the treatment of inflammation and hypertension. X-ray crystallographic fragment screening was used to identify fragment hits and their binding modes. Eight fragment hits were identified via soaking of sEH crystals with fragment cocktails, and the co-crystal structures of these hits were determined via individual soaking. Based on the binding mode, N-ethylmethylamine was identified as a promising scaffold that forms hydrogen bonds with the catalytic residues of sEH, Asp335, Tyr383, and Tyr466. Compounds containing this scaffold were selected from an in-house chemical library and assayed. Although the starting fragment had a weak inhibitory activity (IC50: 800muM), we identified potent inhibitors including 2-({[2-(adamantan-1-yl)ethyl]amino}methyl)phenol exhibiting the highest inhibitory activity (IC50: 0.51muM). This corresponded to a more than 1500-fold increase in inhibitory activity compared to the starting fragment. Co-crystal structures of the hit compounds demonstrate that the binding of N-ethylmethylamine to catalytic residues is similar to that of the starting fragment. We therefore consider crystallographic fragment screening to be appropriate for the identification of weak but promising fragment hits. Identification of N-ethylmethylamine as a novel scaffold for inhibitors of soluble epoxide hydrolase by crystallographic fragment screening.,Amano Y, Tanabe E, Yamaguchi T Bioorg Med Chem. 2015 May 15;23(10):2310-7. doi: 10.1016/j.bmc.2015.03.083. Epub , 2015 Apr 6. PMID:25862210[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|