4xks: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==E. coli BFR variant Y45F== | ==E. coli BFR variant Y45F== | ||
<StructureSection load='4xks' size='340' side='right' caption='[[4xks]], [[Resolution|resolution]] 1.57Å' scene=''> | <StructureSection load='4xks' size='340' side='right'caption='[[4xks]], [[Resolution|resolution]] 1.57Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4xks]] is a 12 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4XKS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4XKS FirstGlance]. <br> | <table><tr><td colspan='2'>[[4xks]] is a 12 chain structure with sequence from [http://en.wikipedia.org/wiki/Ecoli Ecoli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4XKS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4XKS FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">bfr, b3336, JW3298 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ferroxidase Ferroxidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.16.3.1 1.16.3.1] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ferroxidase Ferroxidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.16.3.1 1.16.3.1] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4xks FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4xks OCA], [http://pdbe.org/4xks PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4xks RCSB], [http://www.ebi.ac.uk/pdbsum/4xks PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4xks FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4xks OCA], [http://pdbe.org/4xks PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4xks RCSB], [http://www.ebi.ac.uk/pdbsum/4xks PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4xks ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 22: | Line 24: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Ecoli]] | |||
[[Category: Ferroxidase]] | [[Category: Ferroxidase]] | ||
[[Category: Large Structures]] | |||
[[Category: Bradley, J M]] | [[Category: Bradley, J M]] | ||
[[Category: Brun, N E.Le]] | [[Category: Brun, N E.Le]] |
Revision as of 10:01, 29 May 2019
E. coli BFR variant Y45FE. coli BFR variant Y45F
Structural highlights
Function[BFR_ECOLI] Iron-storage protein, whose ferroxidase center binds Fe(2+) ions, oxidizes them by dioxygen to Fe(3+), and participates in the subsequent Fe(3+) oxide mineral core formation within the central cavity of the protein complex. The mineralized iron core can contain as many as 2700 iron atoms/24-meric molecule.[1] [2] Publication Abstract from PubMedFerritins are iron storage proteins that overcome the problems of toxicity and poor bioavailability of iron by catalyzing iron oxidation and mineralization through the activity of a diiron ferroxidase site. Unlike in other ferritins, the oxidized di-Fe3+ site of Escherichia coli bacterioferritin (EcBFR) is stable and therefore does not function as a conduit for the transfer of Fe3+ into the storage cavity, but instead acts as a true catalytic cofactor that cycles its oxidation state while driving Fe2+ oxidation in the cavity. Herein, we demonstrate that EcBFR mineralization depends on three aromatic residues near the diiron site, Tyr25, Tyr58, and Trp133, and that a transient radical is formed on Tyr25. The data indicate that the aromatic residues, together with a previously identified inner surface iron site, promote mineralization by ensuring the simultaneous delivery of two electrons, derived from Fe2+ oxidation in the BFR cavity, to the di-ferric catalytic site for safe reduction of O2 . Three Aromatic Residues are Required for Electron Transfer during Iron Mineralization in Bacterioferritin.,Bradley JM, Svistunenko DA, Lawson TL, Hemmings AM, Moore GR, Le Brun NE Angew Chem Int Ed Engl. 2015 Oct 16. doi: 10.1002/anie.201507486. PMID:26474305[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|