6hw1: Difference between revisions
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6hw1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6hw1 OCA], [http://pdbe.org/6hw1 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6hw1 RCSB], [http://www.ebi.ac.uk/pdbsum/6hw1 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6hw1 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6hw1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6hw1 OCA], [http://pdbe.org/6hw1 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6hw1 RCSB], [http://www.ebi.ac.uk/pdbsum/6hw1 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6hw1 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Determining optimal conditions for the production of well diffracting crystals is a key step in every biocrystallography project. Here, a microfluidic device is described that enables the production of crystals by counter-diffusion and their direct on-chip analysis by serial crystallography at room temperature. Nine 'non-model' and diverse biomacromolecules, including seven soluble proteins, a membrane protein and an RNA duplex, were crystallized and treated on-chip with a variety of standard techniques including micro-seeding, crystal soaking with ligands and crystal detection by fluorescence. Furthermore, the crystal structures of four proteins and an RNA were determined based on serial data collected on four synchrotron beamlines, demonstrating the general applicability of this multipurpose chip concept. | |||
A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography.,de Wijn R, Hennig O, Roche J, Engilberge S, Rollet K, Fernandez-Millan P, Brillet K, Betat H, Morl M, Roussel A, Girard E, Mueller-Dieckmann C, Fox GC, Olieric V, Gavira JA, Lorber B, Sauter C IUCrJ. 2019 Apr 19;6(Pt 3):454-464. doi: 10.1107/S2052252519003622. eCollection, 2019 May 1. PMID:31098026<ref>PMID:31098026</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 6hw1" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 09:35, 29 May 2019
ROOM TEMPERATURE STRUCTURE OF LIPASE FROM T. LANUGINOSA AT 2.5 A RESOLUTION IN CHIPX MICROFLUIDIC DEVICEROOM TEMPERATURE STRUCTURE OF LIPASE FROM T. LANUGINOSA AT 2.5 A RESOLUTION IN CHIPX MICROFLUIDIC DEVICE
Structural highlights
Publication Abstract from PubMedDetermining optimal conditions for the production of well diffracting crystals is a key step in every biocrystallography project. Here, a microfluidic device is described that enables the production of crystals by counter-diffusion and their direct on-chip analysis by serial crystallography at room temperature. Nine 'non-model' and diverse biomacromolecules, including seven soluble proteins, a membrane protein and an RNA duplex, were crystallized and treated on-chip with a variety of standard techniques including micro-seeding, crystal soaking with ligands and crystal detection by fluorescence. Furthermore, the crystal structures of four proteins and an RNA were determined based on serial data collected on four synchrotron beamlines, demonstrating the general applicability of this multipurpose chip concept. A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography.,de Wijn R, Hennig O, Roche J, Engilberge S, Rollet K, Fernandez-Millan P, Brillet K, Betat H, Morl M, Roussel A, Girard E, Mueller-Dieckmann C, Fox GC, Olieric V, Gavira JA, Lorber B, Sauter C IUCrJ. 2019 Apr 19;6(Pt 3):454-464. doi: 10.1107/S2052252519003622. eCollection, 2019 May 1. PMID:31098026[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|