4ulv: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Cytochrome c prime from Shewanella frigidimarina== | ==Cytochrome c prime from Shewanella frigidimarina== | ||
<StructureSection load='4ulv' size='340' side='right' caption='[[4ulv]], [[Resolution|resolution]] 1.29Å' scene=''> | <StructureSection load='4ulv' size='340' side='right'caption='[[4ulv]], [[Resolution|resolution]] 1.29Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4ulv]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4ULV OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ULV FirstGlance]. <br> | <table><tr><td colspan='2'>[[4ulv]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Acam_591 Acam 591]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4ULV OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ULV FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HEC:HEME+C'>HEC</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HEC:HEME+C'>HEC</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ulv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ulv OCA], [http://pdbe.org/4ulv PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4ulv RCSB], [http://www.ebi.ac.uk/pdbsum/4ulv PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4ulv ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ulv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ulv OCA], [http://pdbe.org/4ulv PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4ulv RCSB], [http://www.ebi.ac.uk/pdbsum/4ulv PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4ulv ProSAT]</span></td></tr> | ||
Line 24: | Line 24: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Acam 591]] | |||
[[Category: Large Structures]] | |||
[[Category: Dobbin, P S]] | [[Category: Dobbin, P S]] | ||
[[Category: Hough, M A]] | [[Category: Hough, M A]] |
Revision as of 11:44, 21 May 2019
Cytochrome c prime from Shewanella frigidimarinaCytochrome c prime from Shewanella frigidimarina
Structural highlights
Publication Abstract from PubMedThe cytochromes c' (CYTcp) are found in denitrifying, methanotrophic and photosynthetic bacteria. These proteins are able to form stable adducts with CO and NO but not with O2. The binding of NO to CYTcp currently provides the best structural model for the NO activation mechanism of soluble guanylate cyclase. Ligand binding in CYTcps has been shown to be highly dependent on residues in both the proximal and distal heme pockets. Group 1 CYTcps typically have a phenylalanine residue positioned close to the distal face of heme, while for group 2, this residue is typically leucine. We have structurally, spectroscopically and kinetically characterised the CYTcp from Shewanella frigidimarina (SFCP), a protein that has a distal phenylalanine residue and a lysine in the proximal pocket in place of the more common arginine. Each monomer of the SFCP dimer folds as a 4-alpha-helical bundle in a similar manner to CYTcps previously characterised. SFCP exhibits biphasic binding kinetics for both NO and CO as a result of the high level of steric hindrance from the aromatic side chain of residue Phe 16. The binding of distal ligands is thus controlled by the conformation of the phenylalanine ring. Only a proximal 5-coordinate NO adduct, confirmed by structural data, is observed with no detectable hexacoordinate distal NO adduct. Conformational control of the binding of diatomic gases to cytochrome c'.,Manole A, Kekilli D, Svistunenko DA, Wilson MT, Dobbin PS, Hough MA J Biol Inorg Chem. 2015 Mar 20. PMID:25792378[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|