6qh2: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='6qh2' size='340' side='right'caption='[[6qh2]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | <StructureSection load='6qh2' size='340' side='right'caption='[[6qh2]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6qh2]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6QH2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6QH2 FirstGlance]. <br> | <table><tr><td colspan='2'>[[6qh2]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Ecose Ecose]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6QH2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6QH2 FirstGlance]. <br> | ||
</td></tr><tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Polyribonucleotide_nucleotidyltransferase Polyribonucleotide nucleotidyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.8 2.7.7.8] </span></td></tr> | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">pnp, ECSE_3450 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=409438 ECOSE])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Polyribonucleotide_nucleotidyltransferase Polyribonucleotide nucleotidyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.8 2.7.7.8] </span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6qh2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6qh2 OCA], [http://pdbe.org/6qh2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6qh2 RCSB], [http://www.ebi.ac.uk/pdbsum/6qh2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6qh2 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6qh2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6qh2 OCA], [http://pdbe.org/6qh2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6qh2 RCSB], [http://www.ebi.ac.uk/pdbsum/6qh2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6qh2 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 22: | Line 23: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Ecose]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Polyribonucleotide nucleotidyltransferase]] | [[Category: Polyribonucleotide nucleotidyltransferase]] |
Latest revision as of 11:24, 21 May 2019
Solution NMR ensemble for a chimeric KH-S1 domain construct of exosomal polynucleotide phosphrylase at 298K compiled using the CoMAND methodSolution NMR ensemble for a chimeric KH-S1 domain construct of exosomal polynucleotide phosphrylase at 298K compiled using the CoMAND method
Structural highlights
Function[PNP_ECOSE] Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'-direction.[HAMAP-Rule:MF_01595] Publication Abstract from PubMedThe ability of proteins to adopt multiple conformational states is essential to their function, and elucidating the details of such diversity under physiological conditions has been a major challenge. Here we present a generalized method for mapping protein population landscapes by NMR spectroscopy. Experimental NOESY spectra are directly compared with a set of expectation spectra back-calculated across an arbitrary conformational space. Signal decomposition of the experimental spectrum then directly yields the relative populations of local conformational microstates. In this way, averaged descriptions of conformation can be eliminated. As the method quantitatively compares experimental and expectation spectra, it inherently delivers an R factor expressing how well structural models explain the input data. We demonstrate that our method extracts sufficient information from a single 3D NOESY experiment to perform initial model building, refinement, and validation, thus offering a complete de novo structure determination protocol. Mapping Local Conformational Landscapes of Proteins in Solution.,ElGamacy M, Riss M, Zhu H, Truffault V, Coles M Structure. 2019 Mar 26. pii: S0969-2126(19)30083-8. doi:, 10.1016/j.str.2019.03.005. PMID:30930065[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|