1a3q: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==HUMAN NF-KAPPA-B P52 BOUND TO DNA== | ==HUMAN NF-KAPPA-B P52 BOUND TO DNA== | ||
<StructureSection load='1a3q' size='340' side='right' caption='[[1a3q]], [[Resolution|resolution]] 2.10Å' scene=''> | <StructureSection load='1a3q' size='340' side='right'caption='[[1a3q]], [[Resolution|resolution]] 2.10Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1a3q]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A3Q OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1A3Q FirstGlance]. <br> | <table><tr><td colspan='2'>[[1a3q]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A3Q OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1A3Q FirstGlance]. <br> | ||
Line 14: | Line 14: | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a3/1a3q_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a3/1a3q_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
Line 33: | Line 33: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | |||
[[Category: Cramer, P]] | [[Category: Cramer, P]] | ||
[[Category: Larson, C J]] | [[Category: Larson, C J]] |
Revision as of 17:51, 10 May 2019
HUMAN NF-KAPPA-B P52 BOUND TO DNAHUMAN NF-KAPPA-B P52 BOUND TO DNA
Structural highlights
Disease[NFKB2_HUMAN] Note=A chromosomal aberration involving NFKB2 is found in a case of B-cell non Hodgkin lymphoma (B-NHL). Translocation t(10;14)(q24;q32) with IGHA1. The resulting oncogene is also called Lyt-10C alpha variant. Note=A chromosomal aberration involving NFKB2 is found in a cutaneous T-cell leukemia (C-TCL) cell line. This rearrangement produces the p80HT gene which encodes for a truncated 80 kDa protein (p80HT). Note=In B-cell leukemia (B-CLL) cell line, LB40 and EB308, can be found after heterogeneous chromosomal aberrations, such as internal deletions. Function[NFKB2_HUMAN] NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structure of human NF-kappaB p52 in its specific complex with the natural kappaB DNA binding site MHC H-2 has been solved at 2.1 A resolution. Whereas the overall structure resembles that of the NF-kappaB p50-DNA complex, pronounced differences are observed within the 'insert region'. This sequence segment differs in length between different Rel proteins. Compared with NF-kappaB p50, the compact alpha-helical insert region element is rotated away from the core of the N-terminal domain, opening up a mainly polar cleft. The insert region presents potential interaction surfaces to other proteins. The high resolution of the structure reveals many water molecules which mediate interactions in the protein-DNA interface. Additional complexity in Rel protein-DNA interaction comes from an extended interfacial water cavity that connects residues at the edge of the dimer interface to the central DNA bases. The observed water network might acount for differences in binding specificity between NF-kappaB p52 and NF-kappaB p50 homodimers. Structure of the human NF-kappaB p52 homodimer-DNA complex at 2.1 A resolution.,Cramer P, Larson CJ, Verdine GL, Muller CW EMBO J. 1997 Dec 1;16(23):7078-90. PMID:9384586[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|