Hsp70: Difference between revisions
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
'''Mechanism of Substrate Binding Domain and ATPase when ATP Binds (Allostery)''' | '''Mechanism of Substrate Binding Domain and ATPase when ATP Binds (Allostery)''' | ||
Chaperons require energy do to their job. The structure within the chaperon in which ATP hydrolysis occurs in the Nucleotide Binding Domain (NBD) is directly attached to the Substrate Binding Domain (SBD). This is a favorable set up as the energy produced by ATP hydrolysis can be directly coupled with a change in shape of the substrate binding domain that allows for substrate folding/refolding. The interaction between the protein’s function and ATP binding as well as peptide binding is known to be allosteric, or the binding of a molecule to the protein regulates, or transmits a signal, to another area of the protein either enhancing or inhibiting function in that area/domain. | Chaperons require energy do to their job. The structure within the chaperon in which ATP hydrolysis occurs in the Nucleotide Binding Domain (NBD) is directly attached to the Substrate Binding Domain (SBD). This is a favorable set up as the energy produced by ATP hydrolysis can be directly coupled with a change in shape of the substrate binding domain that allows for substrate folding/refolding. The interaction between the protein’s function and ATP binding as well as peptide binding is known to be allosteric, or the binding of a molecule to the protein regulates, or transmits a signal, to another area of the protein either enhancing or inhibiting function in that area/domain. | ||
An image of the residues in the NBD contact with the ADP can be viewed <scene name='81/813405/Contact_to_adp/1'>here</scene>. | |||
ATP is not the only means of allosteric control on this enzyme. When a polypeptide binds to the SBD it actually decreases the stabilization between the SBD and NBD domains. The SBD change caused by polypeptide binding is transmitted to the NBD which increases the rate of ATP Hydrolysis in that domain <ref>Young J. C. (2010). Mechanisms of the Hsp70 chaperone system. Biochemistry and cell biology = Biochimie et biologie cellulaire, 88(2), 291-300</ref>. | |||
The overall picture is this: In the ATP-bound state, the SBD pocket is open and ready for the substrate, a polypeptide, to bind. The binding of a polypeptide makes the ATP-bound state less stable and favor the ADP-bound state promoting hydrolysis of the ATP. This provides energy for the folding of the bound polypeptide. Once the energy is used up and the protein is folded, Hsp70 binds a new ATP. Because of the newly bound ATP, the chaperon will have less affinity for the substrate and release the newly folded protein so it can once again fulfill its role within the cell. | The overall picture is this: In the ATP-bound state, the SBD pocket is open and ready for the substrate, a polypeptide, to bind. The binding of a polypeptide makes the ATP-bound state less stable and favor the ADP-bound state promoting hydrolysis of the ATP. This provides energy for the folding of the bound polypeptide. Once the energy is used up and the protein is folded, Hsp70 binds a new ATP. Because of the newly bound ATP, the chaperon will have less affinity for the substrate and release the newly folded protein so it can once again fulfill its role within the cell. |