4pfe: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of vsfGFP-0== | ==Crystal structure of vsfGFP-0== | ||
<StructureSection load='4pfe' size='340' side='right' caption='[[4pfe]], [[Resolution|resolution]] 2.60Å' scene=''> | <StructureSection load='4pfe' size='340' side='right'caption='[[4pfe]], [[Resolution|resolution]] 2.60Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4pfe]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4PFE OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4PFE FirstGlance]. <br> | <table><tr><td colspan='2'>[[4pfe]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Aeqvi Aeqvi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4PFE OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4PFE FirstGlance]. <br> | ||
</td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr> | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4pfe FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4pfe OCA], [http://pdbe.org/4pfe PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4pfe RCSB], [http://www.ebi.ac.uk/pdbsum/4pfe PDBsum]</span></td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GFP ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=6100 AEQVI])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4pfe FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4pfe OCA], [http://pdbe.org/4pfe PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4pfe RCSB], [http://www.ebi.ac.uk/pdbsum/4pfe PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4pfe ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | == Function == | ||
Line 17: | Line 19: | ||
</div> | </div> | ||
<div class="pdbe-citations 4pfe" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 4pfe" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Green Fluorescent Protein|Green Fluorescent Protein]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Aeqvi]] | |||
[[Category: Large Structures]] | |||
[[Category: Chen, S L]] | [[Category: Chen, S L]] | ||
[[Category: Jauch, R]] | [[Category: Jauch, R]] |
Revision as of 11:03, 17 April 2019
Crystal structure of vsfGFP-0Crystal structure of vsfGFP-0
Structural highlights
Function[GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. Publication Abstract from PubMedFluorescent proteins are transformative tools; thus, any brightness increase is a welcome improvement. We invented the "vGFP strategy" based on structural analysis of GFP bound to a single-domain antibody, predicting tunable dimerization, enhanced brightness (ca. 50 %), and improved pH resistance. We verified all of these predictions using biochemistry, crystallography, and single-molecule studies. We applied the vsfGFP proteins in three diverse scenarios: single-step immunofluorescence in vitro (3x brighter due to dimerization); expression in bacteria and human cells in vivo (1.5x brighter); and protein fusions showing better pH resistance in human cells in vivo. The vGFP strategy thus allows upgrading of existing applications, is applicable to other fluorescent proteins, and suggests a method for tuning dimerization of arbitrary proteins and optimizing protein properties in general. Rational Structure-Based Design of Bright GFP-Based Complexes with Tunable Dimerization.,Eshaghi M, Sun G, Gruter A, Lim CL, Chee YC, Jung G, Jauch R, Wohland T, Chen SL Angew Chem Int Ed Engl. 2015 Nov 16;54(47):13952-6. doi: 10.1002/anie.201506686. , Epub 2015 Oct 8. PMID:26447926[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|