4j82: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:


==Crystal structure of beta'-COP/Insig-2 complex==
==Crystal structure of beta'-COP/Insig-2 complex==
<StructureSection load='4j82' size='340' side='right' caption='[[4j82]], [[Resolution|resolution]] 1.46&Aring;' scene=''>
<StructureSection load='4j82' size='340' side='right'caption='[[4j82]], [[Resolution|resolution]] 1.46&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4j82]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4J82 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4J82 FirstGlance]. <br>
<table><tr><td colspan='2'>[[4j82]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4J82 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4J82 FirstGlance]. <br>
Line 22: Line 22:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Large Structures]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Goldberg, J]]
[[Category: Goldberg, J]]

Revision as of 11:42, 3 April 2019

Crystal structure of beta'-COP/Insig-2 complexCrystal structure of beta'-COP/Insig-2 complex

Structural highlights

4j82 is a 4 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[COPB2_YEAST] The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins.[1] [INSI2_HUMAN] Mediates feedback control of cholesterol synthesis by controlling SCAP and HMGCR. Functions by blocking the processing of sterol regulatory element-binding proteins (SREBPs). Capable of retaining the SCAP-SREBF2 complex in the ER thus preventing it from escorting SREBPs to the Golgi. Seems to regulate the ubiquitin-mediated proteasomal degradation of HMGCR.[2] [3]

Publication Abstract from PubMed

Cytoplasmic dilysine motifs on transmembrane proteins are captured by coatomer alpha-COP and beta'-COP subunits and packaged into COPI-coated vesicles for Golgi-to-ER retrieval. Numerous ER/Golgi proteins contain K(x)Kxx motifs, but the rules for their recognition are unclear. We present crystal structures of alpha-COP and beta'-COP bound to a series of naturally occurring retrieval motifs-encompassing KKxx, KxKxx and non-canonical RKxx and viral KxHxx sequences. Binding experiments show that alpha-COP and beta'-COP have generally the same specificity for KKxx and KxKxx, but only beta'-COP recognizes the RKxx signal. Dilysine motif recognition involves lysine side-chain interactions with two acidic patches. Surprisingly, however, KKxx and KxKxx motifs bind differently, with their lysine residues transposed at the binding patches. We derive rules for retrieval motif recognition from key structural features: the reversed binding modes, the recognition of the C-terminal carboxylate group which enforces lysine positional context, and the tolerance of the acidic patches for non-lysine residues.

Rules for the recognition of dilysine retrieval motifs by coatomer.,Ma W, Goldberg J EMBO J. 2013 Mar 12. doi: 10.1038/emboj.2013.41. PMID:23481256[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Gabriely G, Kama R, Gerst JE. Involvement of specific COPI subunits in protein sorting from the late endosome to the vacuole in yeast. Mol Cell Biol. 2007 Jan;27(2):526-40. Epub 2006 Nov 13. PMID:17101773 doi:MCB.00577-06
  2. Yabe D, Brown MS, Goldstein JL. Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12753-8. Epub 2002 Sep 19. PMID:12242332 doi:10.1073/pnas.162488899
  3. Gong Y, Lee JN, Brown MS, Goldstein JL, Ye J. Juxtamembranous aspartic acid in Insig-1 and Insig-2 is required for cholesterol homeostasis. Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6154-9. Epub 2006 Apr 10. PMID:16606821 doi:0601923103
  4. Ma W, Goldberg J. Rules for the recognition of dilysine retrieval motifs by coatomer. EMBO J. 2013 Mar 12. doi: 10.1038/emboj.2013.41. PMID:23481256 doi:http://dx.doi.org/10.1038/emboj.2013.41

4j82, resolution 1.46Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA