6o1g: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 1: Line 1:


==Full length human plasma kallikrein with inhibitor==
==Full length human plasma kallikrein with inhibitor==
<StructureSection load='6o1g' size='340' side='right' caption='[[6o1g]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
<StructureSection load='6o1g' size='340' side='right'caption='[[6o1g]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[6o1g]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6O1G OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6O1G FirstGlance]. <br>
<table><tr><td colspan='2'>[[6o1g]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6O1G OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6O1G FirstGlance]. <br>
Line 13: Line 13:
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/KLKB1_HUMAN KLKB1_HUMAN]] The enzyme cleaves Lys-Arg and Arg-Ser bonds. It activates, in a reciprocal reaction, factor XII after its binding to a negatively charged surface. It also releases bradykinin from HMW kininogen and may also play a role in the renin-angiotensin system by converting prorenin into renin.  
[[http://www.uniprot.org/uniprot/KLKB1_HUMAN KLKB1_HUMAN]] The enzyme cleaves Lys-Arg and Arg-Ser bonds. It activates, in a reciprocal reaction, factor XII after its binding to a negatively charged surface. It also releases bradykinin from HMW kininogen and may also play a role in the renin-angiotensin system by converting prorenin into renin.  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Plasma kallikrein (pKal) is a serine protease responsible for cleaving high-molecular-weight kininogen to produce the pro-inflammatory peptide, bradykinin. Unregulated pKal activity can lead to hereditary angioedema (HAE) following excess bradykinin release. HAE attacks can lead to a compromised airway that can be life threatening. As there are limited agents for prophylaxis of HAE attacks, there is a high unmet need for a therapeutic agent for regulating pKal with a high degree of specificity. Here we present crystal structures of both full-length and the protease domain of pKal, bound to two very distinct classes of small-molecule inhibitors: compound 1, and BCX4161. Both inhibitors demonstrate low nM inhibitory potency for pKal and varying specificity for related serine proteases. Compound 1 utilizes a surprising mode of interaction and upon binding results in a rearrangement of the binding pocket. Co-crystal structures of pKal describes why this class of small-molecule inhibitor is potent. Lack of conservation in surrounding residues explains the approximately 10,000-fold specificity over structurally similar proteases, as shown by in vitro protease inhibition data. Structural information, combined with biochemical and enzymatic analyses, provides a novel scaffold for the design of targeted oral small molecule inhibitors of pKal for treatment of HAE and other diseases resulting from unregulated plasma kallikrein activity.
Structures of full-length plasma kallikrein bound to highly specific inhibitors describe a new mode of targeted inhibition.,Partridge JR, Choy RM, Silva-Garcia A, Yu C, Li Z, Sham H, Metcalf B J Struct Biol. 2019 Mar 12. pii: S1047-8477(19)30046-2. doi:, 10.1016/j.jsb.2019.03.001. PMID:30876891<ref>PMID:30876891</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6o1g" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Plasma kallikrein]]
[[Category: Plasma kallikrein]]
[[Category: Choy, R M]]
[[Category: Choy, R M]]

Latest revision as of 10:12, 27 March 2019

Full length human plasma kallikrein with inhibitorFull length human plasma kallikrein with inhibitor

Structural highlights

6o1g is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Activity:Plasma kallikrein, with EC number 3.4.21.34
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[KLKB1_HUMAN] Defects in KLKB1 are the cause of prekallikrein deficiency (PKK deficiency) [MIM:612423]; also known as Fletcher factor deficiency. This disorder is a blood coagulation defect.

Function

[KLKB1_HUMAN] The enzyme cleaves Lys-Arg and Arg-Ser bonds. It activates, in a reciprocal reaction, factor XII after its binding to a negatively charged surface. It also releases bradykinin from HMW kininogen and may also play a role in the renin-angiotensin system by converting prorenin into renin.

Publication Abstract from PubMed

Plasma kallikrein (pKal) is a serine protease responsible for cleaving high-molecular-weight kininogen to produce the pro-inflammatory peptide, bradykinin. Unregulated pKal activity can lead to hereditary angioedema (HAE) following excess bradykinin release. HAE attacks can lead to a compromised airway that can be life threatening. As there are limited agents for prophylaxis of HAE attacks, there is a high unmet need for a therapeutic agent for regulating pKal with a high degree of specificity. Here we present crystal structures of both full-length and the protease domain of pKal, bound to two very distinct classes of small-molecule inhibitors: compound 1, and BCX4161. Both inhibitors demonstrate low nM inhibitory potency for pKal and varying specificity for related serine proteases. Compound 1 utilizes a surprising mode of interaction and upon binding results in a rearrangement of the binding pocket. Co-crystal structures of pKal describes why this class of small-molecule inhibitor is potent. Lack of conservation in surrounding residues explains the approximately 10,000-fold specificity over structurally similar proteases, as shown by in vitro protease inhibition data. Structural information, combined with biochemical and enzymatic analyses, provides a novel scaffold for the design of targeted oral small molecule inhibitors of pKal for treatment of HAE and other diseases resulting from unregulated plasma kallikrein activity.

Structures of full-length plasma kallikrein bound to highly specific inhibitors describe a new mode of targeted inhibition.,Partridge JR, Choy RM, Silva-Garcia A, Yu C, Li Z, Sham H, Metcalf B J Struct Biol. 2019 Mar 12. pii: S1047-8477(19)30046-2. doi:, 10.1016/j.jsb.2019.03.001. PMID:30876891[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Partridge JR, Choy RM, Silva-Garcia A, Yu C, Li Z, Sham H, Metcalf B. Structures of full-length plasma kallikrein bound to highly specific inhibitors describe a new mode of targeted inhibition. J Struct Biol. 2019 Mar 12. pii: S1047-8477(19)30046-2. doi:, 10.1016/j.jsb.2019.03.001. PMID:30876891 doi:http://dx.doi.org/10.1016/j.jsb.2019.03.001

6o1g, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA