6d3j: Difference between revisions

No edit summary
No edit summary
Line 1: Line 1:


==FT_T dioxygenase holoenzyme==
==FT_T dioxygenase holoenzyme==
<StructureSection load='6d3j' size='340' side='right' caption='[[6d3j]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
<StructureSection load='6d3j' size='340' side='right'caption='[[6d3j]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[6d3j]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6D3J OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6D3J FirstGlance]. <br>
<table><tr><td colspan='2'>[[6d3j]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_700291 Atcc 700291]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6D3J OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6D3J FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AKG:2-OXOGLUTARIC+ACID'>AKG</scene>, <scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AKG:2-OXOGLUTARIC+ACID'>AKG</scene>, <scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6d3j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6d3j OCA], [http://pdbe.org/6d3j PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6d3j RCSB], [http://www.ebi.ac.uk/pdbsum/6d3j PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6d3j ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6d3j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6d3j OCA], [http://pdbe.org/6d3j PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6d3j RCSB], [http://www.ebi.ac.uk/pdbsum/6d3j PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6d3j ProSAT]</span></td></tr>
</table>
</table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
BACKGROUND: Effective management of weedy species in agricultural fields is essential for maintaining favorable growing conditions and crop yields. The introduction of genetically modified crops containing herbicide tolerance traits has been a successful additional tool available to farmers to better control weeds. However, weed resistance challenges present a need for additional herbicide tolerance trait options. RESULTS: To help meet this challenge, a new trait that provides tolerance to an aryloxyphenoxypropionate (FOP) herbicide and members of the synthetic auxin herbicide family, such as 2,4-D, was developed. Development of this herbicide tolerance trait employed an enzyme engineered with robust and specific enzymatic activity for these two herbicide families. This engineering effort utilized a microbial-sourced dioxygenase scaffold to generate variants with improved enzymatic parameters. Additional optimization to enhance in-plant stability of the enzyme enabled an efficacious trait that can withstand the higher temperature conditions often found in field environments. CONCLUSION: Optimized herbicide tolerance enzyme variants with enhanced enzymatic and temperature stability parameters enabled robust herbicide tolerance for two herbicide families in transgenic maize and soybeans. This herbicide tolerance trait for FOP and synthetic auxin herbicides such as 2,4-D could be useful in weed management systems, providing additional tools for farmers to control weeds. This article is protected by copyright. All rights reserved.
Development of Enzymes for Robust Aryloxyphenoxypropionate and Synthetic Auxin Herbicide Tolerance Traits in Maize and Soybean Crops.,Larue CT, Goley M, Shi L, Evdokimov AG, Sparks OC, Ellis C, Wollacott AM, Rydel TJ, Halls CE, Van Scoyoc B, Fu X, Nageotte JR, Adio AM, Zheng M, Sturman EJ, Garvey GS, Varagona MJ Pest Manag Sci. 2019 Mar 3. doi: 10.1002/ps.5393. PMID:30828945<ref>PMID:30828945</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6d3j" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Atcc 700291]]
[[Category: Large Structures]]
[[Category: Halls, C E]]
[[Category: Halls, C E]]
[[Category: Rydel, T J]]
[[Category: Rydel, T J]]
[[Category: Alpha-ketoglutarate-dependent dioxygenase]]
[[Category: Alpha-ketoglutarate-dependent dioxygenase]]
[[Category: Oxidoreductase]]
[[Category: Oxidoreductase]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA