6e5a: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
'''Unreleased structure'''


The entry 6e5a is ON HOLD until Paper Publication
==PPARg in complex with compound 4b==
<StructureSection load='6e5a' size='340' side='right'caption='[[6e5a]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[6e5a]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6E5A OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6E5A FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HV4:(5Z)-5-({4-[(prop-2-yn-1-yl)oxy]phenyl}methylidene)-2-sulfanylidene-1,3-thiazolidin-4-one'>HV4</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CME:S,S-(2-HYDROXYETHYL)THIOCYSTEINE'>CME</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6e5a FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6e5a OCA], [http://pdbe.org/6e5a PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6e5a RCSB], [http://www.ebi.ac.uk/pdbsum/6e5a PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6e5a ProSAT]</span></td></tr>
</table>
== Disease ==
[[http://www.uniprot.org/uniprot/PPARG_HUMAN PPARG_HUMAN]] Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer.  Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:[http://omim.org/entry/601665 601665]]. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.<ref>PMID:9753710</ref>  Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:[http://omim.org/entry/604367 604367]]. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.<ref>PMID:12453919</ref> <ref>PMID:11788685</ref>  Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:[http://omim.org/entry/137800 137800]]. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility.
== Function ==
[[http://www.uniprot.org/uniprot/PPARG_HUMAN PPARG_HUMAN]] Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.<ref>PMID:9065481</ref> <ref>PMID:16150867</ref> <ref>PMID:20829347</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
In search for effective multi-targeting drug ligands (MTDLs) to address low-grade inflammatory changes of metabolic disorders, we rationally designed some novel glitazones-like compounds. This was achieved by incorporating prominent pharmacophoric motifs from previously reported COX-2, 15-LOX and PPARgamma ligands. Challenging our design with pre-synthetic docking experiments on PPARgamma showed encouraging results. In vitro tests have identified 4 compounds as simultaneous partial PPARgamma agonist, potent COX-2 antagonist (nanomolar IC50 values) and moderate 15-LOX inhibitor (micromolar IC50 values). We envisioned such outcome as a prototypical balanced modulation of the 3 inflammatory targets. In vitro glucose uptake assay defined six compounds as insulin-sensitive and the other two as insulin-independent glucose uptake enhancers. Also, they were able to induce PPARgamma nuclear translocation in immunohistochemical analysis. Their anti-inflammatory potential has been translated to effective inhibition of monocyte to macrophage differentiation, suppression of LPS-induced inflammatory cytokine production in macrophages, as well as significant in vivo anti-inflammatory activity. Ligand co-crystallized PPARgamma X-ray of one of MTDLs has identified new clues that could serve as structural basis for its partial agonism. Docking of the most active compounds into COX-2 and 15-LOX active sites, pinpointed favorable binding patterns, similar to those of the co-crystallized ligands. Finally, in silico assessment of pharmacokinetics, physicochemical properties, drug-likeness and ligand efficiency indices was performed. Hence, we anticipate that the prominent biological profile of such series will rationalize relevant anti-inflammatory drug development endeavors.


Authors: Bruning, J.B., Chua, B.S.K.
Shooting three inflammatory targets with a single bullet: Novel multi-targeting anti-inflammatory glitazones.,Elzahhar PA, Alaaeddine R, Ibrahim TM, Nassra R, Ismail A, Chua BSK, Frkic RL, Bruning JB, Wallner N, Knape T, von Knethen A, Labib H, El-Yazbi AF, Belal ASF Eur J Med Chem. 2019 Apr 1;167:562-582. doi: 10.1016/j.ejmech.2019.02.034. Epub, 2019 Feb 13. PMID:30818268<ref>PMID:30818268</ref>


Description: PPARg in complex with compound 4b
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
[[Category: Chua, B.S.K]]
<div class="pdbe-citations 6e5a" style="background-color:#fffaf0;"></div>
[[Category: Bruning, J.B]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Bruning, J B]]
[[Category: Chua, B S.K]]
[[Category: Ligand binding domain]]
[[Category: Nuclear receptor]]
[[Category: Ppar]]
[[Category: Transcription]]
[[Category: Transcription factor]]

Revision as of 14:56, 13 March 2019

PPARg in complex with compound 4bPPARg in complex with compound 4b

Structural highlights

6e5a is a 2 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
NonStd Res:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[PPARG_HUMAN] Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer. Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:601665]. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.[1] Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:604367]. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.[2] [3] Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:137800]. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility.

Function

[PPARG_HUMAN] Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.[4] [5] [6]

Publication Abstract from PubMed

In search for effective multi-targeting drug ligands (MTDLs) to address low-grade inflammatory changes of metabolic disorders, we rationally designed some novel glitazones-like compounds. This was achieved by incorporating prominent pharmacophoric motifs from previously reported COX-2, 15-LOX and PPARgamma ligands. Challenging our design with pre-synthetic docking experiments on PPARgamma showed encouraging results. In vitro tests have identified 4 compounds as simultaneous partial PPARgamma agonist, potent COX-2 antagonist (nanomolar IC50 values) and moderate 15-LOX inhibitor (micromolar IC50 values). We envisioned such outcome as a prototypical balanced modulation of the 3 inflammatory targets. In vitro glucose uptake assay defined six compounds as insulin-sensitive and the other two as insulin-independent glucose uptake enhancers. Also, they were able to induce PPARgamma nuclear translocation in immunohistochemical analysis. Their anti-inflammatory potential has been translated to effective inhibition of monocyte to macrophage differentiation, suppression of LPS-induced inflammatory cytokine production in macrophages, as well as significant in vivo anti-inflammatory activity. Ligand co-crystallized PPARgamma X-ray of one of MTDLs has identified new clues that could serve as structural basis for its partial agonism. Docking of the most active compounds into COX-2 and 15-LOX active sites, pinpointed favorable binding patterns, similar to those of the co-crystallized ligands. Finally, in silico assessment of pharmacokinetics, physicochemical properties, drug-likeness and ligand efficiency indices was performed. Hence, we anticipate that the prominent biological profile of such series will rationalize relevant anti-inflammatory drug development endeavors.

Shooting three inflammatory targets with a single bullet: Novel multi-targeting anti-inflammatory glitazones.,Elzahhar PA, Alaaeddine R, Ibrahim TM, Nassra R, Ismail A, Chua BSK, Frkic RL, Bruning JB, Wallner N, Knape T, von Knethen A, Labib H, El-Yazbi AF, Belal ASF Eur J Med Chem. 2019 Apr 1;167:562-582. doi: 10.1016/j.ejmech.2019.02.034. Epub, 2019 Feb 13. PMID:30818268[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Ristow M, Muller-Wieland D, Pfeiffer A, Krone W, Kahn CR. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med. 1998 Oct 1;339(14):953-9. PMID:9753710 doi:10.1056/NEJM199810013391403
  2. Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T. PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes. 2002 Dec;51(12):3586-90. PMID:12453919
  3. Agarwal AK, Garg A. A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab. 2002 Jan;87(1):408-11. PMID:11788685
  4. Mukherjee R, Jow L, Croston GE, Paterniti JR Jr. Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARgamma2 versus PPARgamma1 and activation with retinoid X receptor agonists and antagonists. J Biol Chem. 1997 Mar 21;272(12):8071-6. PMID:9065481
  5. Yin Y, Yuan H, Wang C, Pattabiraman N, Rao M, Pestell RG, Glazer RI. 3-phosphoinositide-dependent protein kinase-1 activates the peroxisome proliferator-activated receptor-gamma and promotes adipocyte differentiation. Mol Endocrinol. 2006 Feb;20(2):268-78. Epub 2005 Sep 8. PMID:16150867 doi:10.1210/me.2005-0197
  6. Park SH, Choi HJ, Yang H, Do KH, Kim J, Lee DW, Moon Y. Endoplasmic reticulum stress-activated C/EBP homologous protein enhances nuclear factor-kappaB signals via repression of peroxisome proliferator-activated receptor gamma. J Biol Chem. 2010 Nov 12;285(46):35330-9. doi: 10.1074/jbc.M110.136259. Epub 2010, Sep 9. PMID:20829347 doi:10.1074/jbc.M110.136259
  7. Elzahhar PA, Alaaeddine R, Ibrahim TM, Nassra R, Ismail A, Chua BSK, Frkic RL, Bruning JB, Wallner N, Knape T, von Knethen A, Labib H, El-Yazbi AF, Belal ASF. Shooting three inflammatory targets with a single bullet: Novel multi-targeting anti-inflammatory glitazones. Eur J Med Chem. 2019 Apr 1;167:562-582. doi: 10.1016/j.ejmech.2019.02.034. Epub, 2019 Feb 13. PMID:30818268 doi:http://dx.doi.org/10.1016/j.ejmech.2019.02.034

6e5a, resolution 2.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA