4au0: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Hypocrea jecorina Cel6A D221A mutant soaked with 6-chloro-4- methylumbelliferyl- | ==Hypocrea jecorina Cel6A D221A mutant soaked with 6-chloro-4- methylumbelliferyl-beta-cellobioside== | ||
<StructureSection load='4au0' size='340' side='right' caption='[[4au0]], [[Resolution|resolution]] 1.70Å' scene=''> | <StructureSection load='4au0' size='340' side='right'caption='[[4au0]], [[Resolution|resolution]] 1.70Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4au0]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_13631 Atcc 13631]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AU0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4AU0 FirstGlance]. <br> | <table><tr><td colspan='2'>[[4au0]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_13631 Atcc 13631]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AU0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4AU0 FirstGlance]. <br> | ||
Line 20: | Line 20: | ||
</div> | </div> | ||
<div class="pdbe-citations 4au0" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 4au0" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Cellobiohydrolase|Cellobiohydrolase]] | |||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 11:51, 6 March 2019
Hypocrea jecorina Cel6A D221A mutant soaked with 6-chloro-4- methylumbelliferyl-beta-cellobiosideHypocrea jecorina Cel6A D221A mutant soaked with 6-chloro-4- methylumbelliferyl-beta-cellobioside
Structural highlights
Function[GUX2_HYPJE] The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose. Publication Abstract from PubMedMethylumbelliferyl-beta-cellobioside (MUF-G2) is a convenient fluorogenic substrate for certain beta-glycoside hydrolases (GH). However, hydrolysis of the aglycone is poor with GH family 6 enzymes (GH6), despite strong binding. Prediction of the orientation of the aglycone of MUF-G2 in the +1 subsite of Hypocrea jecorina Cel6A by automated docking suggested umbelliferyl modifications at C4 and C6 for improved recognition. Four modified umbelliferyl-beta-cellobiosides [6-chloro-4-methyl- (ClMUF); 6-chloro-4-trifluoromethyl- (ClF3MUF); 4-phenyl- (PhUF); 6-chloro-4-phenyl- (ClPhUF)] were synthesized and tested with GH6, GH7, GH9, GH5 and GH45 cellulases. Indeed the rate of aglycone release by H. jecorina Cel6A was 10-150 times higher than with MUF-G2, although it was still three orders of magnitude lower than with H. jecorina Cel7B. The 4-phenyl substitution drastically reduced the fluorescence intensity of the free aglycone, while ClMUF-G2 could be used for determination of k(cat) and K(M) for H. jecorina Cel6A and Thermobifida fusca Cel6A. Crystal structures of H. jecorina Cel6A D221A mutant soaked with the MUF-, ClMUF- and ClPhUF-beta-cellobioside substrates show that the modifications turned the umbelliferyl group 'upside down', with the glycosidic bond better positioned for protonation than with MUF-G2. DATABASE: Structural data have been submitted to the Protein Data Bank under accession numbers pdb 4AU0, 4AX7, 4AX6 STRUCTURED DIGITAL ABSTRACT: * http://mint.bio.uniroma2.it/mint/search/interaction.do?interactionAc=MINT-7260296 * Cel6A and Cel6A bind by x-ray crystallography (View Interaction: 1, 2). Rational design, synthesis, evaluation and enzyme-substrate structures of improved fluorogenic substrates for family 6 glycoside hydrolases.,Wu M, Nerinckx W, Piens K, Ishida T, Hansson H, Sandgren M, Stahlberg J FEBS J. 2013 Jan;280(1):184-98. doi: 10.1111/febs.12060. Epub 2012 Dec 7. PMID:23137336[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|