Prion protein: Difference between revisions
Michal Harel (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<StructureSection load='1hjm' size='350' side='right' scene='Prion_protein/Cartoon/4' caption=' NMR structure of human prion protein precursor globular domain (PDB code [[1hjm]])'> | |||
The [[prion protein]] (PrP) is a cell surface glycoprotein, which can exist in two alternatively folded conformations: a cellular isoform denoted (PrP<sup>C</sup>) and a disease associated isoform termed PrP<sup>Sc</sup>. | The [[prion protein]] (PrP) is a cell surface glycoprotein, which can exist in two alternatively folded conformations: a cellular isoform denoted (PrP<sup>C</sup>) and a disease associated isoform termed PrP<sup>Sc</sup>. | ||
Line 9: | Line 12: | ||
==Structure of PrP<sup>C</sup>== | ==Structure of PrP<sup>C</sup>== | ||
PrP<sup>C</sup> has a natively unstructured N-terminal region, and a predominantly α-helical C-terminal region from residues ~120-230, containing three α-helices and two short <scene name='Prion_protein/Cartoon/3'>β-strands</scene>. A <scene name='Prion_protein/1hjm_disulfide_bond/4'>single disulfide bond</scene> connects the middle of helices 2 and 3. The presence of the N-terminal region has little impact on the structure of the C-terminal domain <ref>Zahn, R ''et al.'' (2000) NMR solution structure of the human prion protein ''Proc. Natl. Acad. Sci. USA'' '''97''', 145-150</ref>. The structure of PrP<sup>C</sup> is highly conserved amongst mammals, and only differs slightly in birds, reptiles and amphibians<ref>Calzolai, L ''et al.'' (2005) Prion protein NMR structures of chicken, turtle, and frog ''Proc. Natl. Acad. Sci. USA'' '''102''', 651-655</ref>. | PrP<sup>C</sup> has a natively unstructured N-terminal region, and a predominantly α-helical C-terminal region from residues ~120-230, containing three α-helices and two short <scene name='Prion_protein/Cartoon/3'>β-strands</scene>. A <scene name='Prion_protein/1hjm_disulfide_bond/4'>single disulfide bond</scene> connects the middle of helices 2 and 3. The presence of the N-terminal region has little impact on the structure of the C-terminal domain <ref>Zahn, R ''et al.'' (2000) NMR solution structure of the human prion protein ''Proc. Natl. Acad. Sci. USA'' '''97''', 145-150</ref>. The structure of PrP<sup>C</sup> is highly conserved amongst mammals, and only differs slightly in birds, reptiles and amphibians<ref>Calzolai, L ''et al.'' (2005) Prion protein NMR structures of chicken, turtle, and frog ''Proc. Natl. Acad. Sci. USA'' '''102''', 651-655</ref>. | ||
The vast majority of structures have been determined by NMR spectroscopy, but two structures have been reported by X-ray crystallography. In sheep PrP, the X-ray structure is similar to those determined by NMR spectroscopy, however in human PrP, the X-ray structure is a dimer in which helix 3 is swapped between monomers, and the disulphide bond is rearranged to be intermolecular between the dimer subunits. | The vast majority of structures have been determined by NMR spectroscopy, but two structures have been reported by X-ray crystallography. In sheep PrP, the X-ray structure is similar to those determined by NMR spectroscopy, however in human PrP, the X-ray structure is a dimer in which helix 3 is swapped between monomers, and the disulphide bond is rearranged to be intermolecular between the dimer subunits. | ||
Line 33: | Line 35: | ||
==References== | ==References== | ||
<references/> | <references/> | ||
</StructureSection> | |||
[[Category:Topic Page]] | [[Category:Topic Page]] |