6ep9: Difference between revisions
m Protected "6ep9" [edit=sysop:move=sysop] |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='6ep9' size='340' side='right' caption='[[6ep9]], [[Resolution|resolution]] 2.01Å' scene=''> | <StructureSection load='6ep9' size='340' side='right' caption='[[6ep9]], [[Resolution|resolution]] 2.01Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6ep9]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6EP9 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6EP9 FirstGlance]. <br> | <table><tr><td colspan='2'>[[6ep9]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6EP9 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6EP9 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BNB:N-[2-methyl-3-[4-methyl-6-[4-(4-methylpiperazine-1-carbonyl)anilino]-5-oxo-pyrazin-2-yl]phenyl]-4-(1-piperidyl)benzamide'>BNB</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BNB:N-[2-methyl-3-[4-methyl-6-[4-(4-methylpiperazine-1-carbonyl)anilino]-5-oxo-pyrazin-2-yl]phenyl]-4-(1-piperidyl)benzamide'>BNB</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">BTK, AGMX1, ATK, BPK ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_protein-tyrosine_kinase Non-specific protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.2 2.7.10.2] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_protein-tyrosine_kinase Non-specific protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.2 2.7.10.2] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6ep9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ep9 OCA], [http://pdbe.org/6ep9 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6ep9 RCSB], [http://www.ebi.ac.uk/pdbsum/6ep9 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6ep9 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6ep9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ep9 OCA], [http://pdbe.org/6ep9 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6ep9 RCSB], [http://www.ebi.ac.uk/pdbsum/6ep9 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6ep9 ProSAT]</span></td></tr> | ||
Line 12: | Line 13: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/BTK_HUMAN BTK_HUMAN]] Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling. Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation. After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members. PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK. BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways. Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway. The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense. Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells. Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation. BTK plays also a critical role in transcription regulation. Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes. BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B. Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR. GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression. ARID3A and NFAT are other transcriptional target of BTK. BTK is required for the formation of functional ARID3A DNA-binding complexes. There is however no evidence that BTK itself binds directly to DNA. BTK has a dual role in the regulation of apoptosis.<ref>PMID:9012831</ref> <ref>PMID:11606584</ref> <ref>PMID:16517732</ref> <ref>PMID:16738337</ref> <ref>PMID:16415872</ref> <ref>PMID:17932028</ref> | [[http://www.uniprot.org/uniprot/BTK_HUMAN BTK_HUMAN]] Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling. Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation. After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members. PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK. BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways. Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway. The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense. Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells. Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation. BTK plays also a critical role in transcription regulation. Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes. BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B. Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR. GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression. ARID3A and NFAT are other transcriptional target of BTK. BTK is required for the formation of functional ARID3A DNA-binding complexes. There is however no evidence that BTK itself binds directly to DNA. BTK has a dual role in the regulation of apoptosis.<ref>PMID:9012831</ref> <ref>PMID:11606584</ref> <ref>PMID:16517732</ref> <ref>PMID:16738337</ref> <ref>PMID:16415872</ref> <ref>PMID:17932028</ref> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Targeting the interaction with or displacement of the 'right' water molecule can significantly increase inhibitor potency in structure-guided drug design. Multiple computational approaches exist to predict which waters should be targeted for displacement to achieve the largest gain in potency. However, the relative success of different methods remains underexplored. Here, we present a comparison of the ability of five water prediction programs (3D-RISM, SZMAP, WaterFLAP, WaterRank, and WaterMap) to predict crystallographic water locations, calculate their binding free energies, and to relate differences in these energies to observed changes in potency. The structural cohort included nine Bruton's Tyrosine Kinase (BTK) structures, and nine bromodomain structures. Each program accurately predicted the locations of most crystallographic water molecules. However, the predicted binding free energies correlated poorly with the observed changes in inhibitor potency when solvent atoms were displaced by chemical changes in closely related compounds. | |||
Water molecules in protein-ligand interfaces. Evaluation of software tools and SAR comparison.,Nittinger E, Gibbons P, Eigenbrot C, Davies DR, Maurer B, Yu CL, Kiefer JR, Kuglstatter A, Murray J, Ortwine DF, Tang Y, Tsui V J Comput Aided Mol Des. 2019 Feb 12. pii: 10.1007/s10822-019-00187-y. doi:, 10.1007/s10822-019-00187-y. PMID:30756207<ref>PMID:30756207</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 6ep9" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Tyrosine kinase|Tyrosine kinase]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Human]] | |||
[[Category: Non-specific protein-tyrosine kinase]] | [[Category: Non-specific protein-tyrosine kinase]] | ||
[[Category: Kuglstatter, A]] | [[Category: Kuglstatter, A]] |