5zpm: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='5zpm' size='340' side='right' caption='[[5zpm]], [[Resolution|resolution]] 1.65Å' scene=''> | <StructureSection load='5zpm' size='340' side='right' caption='[[5zpm]], [[Resolution|resolution]] 1.65Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5zpm]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5ZPM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ZPM FirstGlance]. <br> | <table><tr><td colspan='2'>[[5zpm]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"achromobacter_globiformis"_(conn_1928)_bergey_et_al._1930 "achromobacter globiformis" (conn 1928) bergey et al. 1930]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5ZPM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ZPM FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=2TY:2-HYDROXY-5-{[(1E)-2-PHENYLETHYLIDENE]AMINO}-L-TYROSINE'>2TY</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=2TY:2-HYDROXY-5-{[(1E)-2-PHENYLETHYLIDENE]AMINO}-L-TYROSINE'>2TY</scene></td></tr> | ||
Line 9: | Line 9: | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5zpm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5zpm OCA], [http://pdbe.org/5zpm PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5zpm RCSB], [http://www.ebi.ac.uk/pdbsum/5zpm PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5zpm ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5zpm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5zpm OCA], [http://pdbe.org/5zpm PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5zpm RCSB], [http://www.ebi.ac.uk/pdbsum/5zpm PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5zpm ProSAT]</span></td></tr> | ||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
In the catalytic reaction of copper amine oxidase, the protein-derived redox cofactor topaquinone (TPQ) is reduced by an amine substrate to an aminoresorcinol form (TPQamr), which is in equilibrium with a semiquinone radical (TPQsq). The transition from TPQamr to TPQsq is an endothermic process, accompanied by a significant conformational change of the cofactor. We employed the humid air and glue-coating (HAG) method to capture the equilibrium mixture of TPQamr and TPQsq in noncryocooled crystals of the enzyme from Arthrobacter globiformis and found that the equilibrium shifts more toward TPQsq in crystals than in solution. Thermodynamic analyses of the temperature-dependent equilibrium also revealed that the transition to TPQsq is entropy-driven both in crystals and in solution, giving the thermodynamic parameters that led to experimental determination of the crystal packing effect. Furthermore, we demonstrate that the binding of product aldehyde to the hydrophobic pocket in the active site produces various equilibrium states among two forms of the product Schiff-base, TPQamr, and TPQsq, in a pH-dependent manner. The temperature-controlled HAG method provides a technique for thermodynamic analysis of conformational changes occurring in protein crystals that are hardly scrutinized by conventional cryogenic X-ray crystallography. | |||
In crystallo thermodynamic analysis of conformational change of the topaquinone cofactor in bacterial copper amine oxidase.,Murakawa T, Baba S, Kawano Y, Hayashi H, Yano T, Kumasaka T, Yamamoto M, Tanizawa K, Okajima T Proc Natl Acad Sci U S A. 2018 Dec 18. pii: 1811837116. doi:, 10.1073/pnas.1811837116. PMID:30563857<ref>PMID:30563857</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 5zpm" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 12:42, 13 February 2019
Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pH 7 at 288 K (2)Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pH 7 at 288 K (2)
Structural highlights
Publication Abstract from PubMedIn the catalytic reaction of copper amine oxidase, the protein-derived redox cofactor topaquinone (TPQ) is reduced by an amine substrate to an aminoresorcinol form (TPQamr), which is in equilibrium with a semiquinone radical (TPQsq). The transition from TPQamr to TPQsq is an endothermic process, accompanied by a significant conformational change of the cofactor. We employed the humid air and glue-coating (HAG) method to capture the equilibrium mixture of TPQamr and TPQsq in noncryocooled crystals of the enzyme from Arthrobacter globiformis and found that the equilibrium shifts more toward TPQsq in crystals than in solution. Thermodynamic analyses of the temperature-dependent equilibrium also revealed that the transition to TPQsq is entropy-driven both in crystals and in solution, giving the thermodynamic parameters that led to experimental determination of the crystal packing effect. Furthermore, we demonstrate that the binding of product aldehyde to the hydrophobic pocket in the active site produces various equilibrium states among two forms of the product Schiff-base, TPQamr, and TPQsq, in a pH-dependent manner. The temperature-controlled HAG method provides a technique for thermodynamic analysis of conformational changes occurring in protein crystals that are hardly scrutinized by conventional cryogenic X-ray crystallography. In crystallo thermodynamic analysis of conformational change of the topaquinone cofactor in bacterial copper amine oxidase.,Murakawa T, Baba S, Kawano Y, Hayashi H, Yano T, Kumasaka T, Yamamoto M, Tanizawa K, Okajima T Proc Natl Acad Sci U S A. 2018 Dec 18. pii: 1811837116. doi:, 10.1073/pnas.1811837116. PMID:30563857[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|