5un3: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 11: Line 11:
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/THER_BACTH THER_BACTH]] Extracellular zinc metalloprotease.  
[[http://www.uniprot.org/uniprot/THER_BACTH THER_BACTH]] Extracellular zinc metalloprotease.  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Cryocooling of macromolecular crystals is commonly employed to limit radiation damage during X-ray diffraction data collection. However, cooling itself affects macromolecular conformation and often damages crystals via poorly understood processes. Here, the effects of cryosolution thermal contraction on macromolecular conformation and crystal order in crystals ranging from 32 to 67% solvent content are systematically investigated. It is found that the solution thermal contraction affects macromolecule configurations and volumes, unit-cell volumes, crystal packing and crystal order. The effects occur through not only thermal contraction, but also pressure caused by the mismatched contraction of cryosolvent and pores. Higher solvent-content crystals are more affected. In some cases the solvent contraction can be adjusted to reduce mosaicity and increase the strength of diffraction. Ice formation in some crystals is found to cause damage via a reduction in unit-cell volume, which is interpreted through solvent transport out of unit cells during cooling. The results point to more deductive approaches to cryoprotection optimization by adjusting the cryosolution composition to reduce thermal contraction-induced stresses in the crystal with cooling.
The impact of cryosolution thermal contraction on proteins and protein crystals: volumes, conformation and order.,Juers DH, Farley CA, Saxby CP, Cotter RA, Cahn JKB, Holton-Burke RC, Harrison K, Wu Z Acta Crystallogr D Struct Biol. 2018 Sep 1;74(Pt 9):922-938. doi:, 10.1107/S2059798318008793. Epub 2018 Sep 5. PMID:30198901<ref>PMID:30198901</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 5un3" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Thermolysin|Thermolysin]]
*[[Thermolysin|Thermolysin]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Revision as of 23:07, 19 September 2018

Tetragonal thermolysin (295 K) in the presence of 50% xyloseTetragonal thermolysin (295 K) in the presence of 50% xylose

Structural highlights

5un3 is a 1 chain structure with sequence from 'bacillus thermoproteolyticus'. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
Gene:npr ('Bacillus thermoproteolyticus')
Activity:Thermolysin, with EC number 3.4.24.27
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[THER_BACTH] Extracellular zinc metalloprotease.

Publication Abstract from PubMed

Cryocooling of macromolecular crystals is commonly employed to limit radiation damage during X-ray diffraction data collection. However, cooling itself affects macromolecular conformation and often damages crystals via poorly understood processes. Here, the effects of cryosolution thermal contraction on macromolecular conformation and crystal order in crystals ranging from 32 to 67% solvent content are systematically investigated. It is found that the solution thermal contraction affects macromolecule configurations and volumes, unit-cell volumes, crystal packing and crystal order. The effects occur through not only thermal contraction, but also pressure caused by the mismatched contraction of cryosolvent and pores. Higher solvent-content crystals are more affected. In some cases the solvent contraction can be adjusted to reduce mosaicity and increase the strength of diffraction. Ice formation in some crystals is found to cause damage via a reduction in unit-cell volume, which is interpreted through solvent transport out of unit cells during cooling. The results point to more deductive approaches to cryoprotection optimization by adjusting the cryosolution composition to reduce thermal contraction-induced stresses in the crystal with cooling.

The impact of cryosolution thermal contraction on proteins and protein crystals: volumes, conformation and order.,Juers DH, Farley CA, Saxby CP, Cotter RA, Cahn JKB, Holton-Burke RC, Harrison K, Wu Z Acta Crystallogr D Struct Biol. 2018 Sep 1;74(Pt 9):922-938. doi:, 10.1107/S2059798318008793. Epub 2018 Sep 5. PMID:30198901[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Juers DH, Farley CA, Saxby CP, Cotter RA, Cahn JKB, Holton-Burke RC, Harrison K, Wu Z. The impact of cryosolution thermal contraction on proteins and protein crystals: volumes, conformation and order. Acta Crystallogr D Struct Biol. 2018 Sep 1;74(Pt 9):922-938. doi:, 10.1107/S2059798318008793. Epub 2018 Sep 5. PMID:30198901 doi:http://dx.doi.org/10.1107/S2059798318008793

5un3, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA