6d59: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Ras:SOS:Ras in complex with a small molecule activator== | |||
<StructureSection load='6d59' size='340' side='right' caption='[[6d59]], [[Resolution|resolution]] 1.70Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[6d59]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6D59 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6D59 FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=FVJ:6-chloro-4-(3,5-dimethyl-1H-pyrazol-4-yl)-1-[(4-fluoro-3,5-dimethylphenyl)methyl]-2-(piperazin-1-yl)-1H-benzimidazole'>FVJ</scene>, <scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | |||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSO:S-HYDROXYCYSTEINE'>CSO</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6d59 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6d59 OCA], [http://pdbe.org/6d59 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6d59 RCSB], [http://www.ebi.ac.uk/pdbsum/6d59 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6d59 ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[[http://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN]] Defects in HRAS are the cause of faciocutaneoskeletal syndrome (FCSS) [MIM:[http://omim.org/entry/218040 218040]]. A rare condition characterized by prenatally increased growth, postnatal growth deficiency, mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy and/or atrial tachycardia), tumor predisposition, skin and musculoskeletal abnormalities.<ref>PMID:16170316</ref> <ref>PMID:16329078</ref> <ref>PMID:16443854</ref> <ref>PMID:17054105</ref> <ref>PMID:18247425</ref> <ref>PMID:18039947</ref> <ref>PMID:19995790</ref> Defects in HRAS are the cause of congenital myopathy with excess of muscle spindles (CMEMS) [MIM:[http://omim.org/entry/218040 218040]]. CMEMS is a variant of Costello syndrome.<ref>PMID:17412879</ref> Defects in HRAS may be a cause of susceptibility to Hurthle cell thyroid carcinoma (HCTC) [MIM:[http://omim.org/entry/607464 607464]]. Hurthle cell thyroid carcinoma accounts for approximately 3% of all thyroid cancers. Although they are classified as variants of follicular neoplasms, they are more often multifocal and somewhat more aggressive and are less likely to take up iodine than are other follicular neoplasms. Note=Mutations which change positions 12, 13 or 61 activate the potential of HRAS to transform cultured cells and are implicated in a variety of human tumors. Defects in HRAS are a cause of susceptibility to bladder cancer (BLC) [MIM:[http://omim.org/entry/109800 109800]]. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences. Note=Defects in HRAS are the cause of oral squamous cell carcinoma (OSCC).<ref>PMID:1459726</ref> Defects in HRAS are the cause of Schimmelpenning-Feuerstein-Mims syndrome (SFM) [MIM:[http://omim.org/entry/163200 163200]]. A disease characterized by sebaceous nevi, often on the face, associated with variable ipsilateral abnormalities of the central nervous system, ocular anomalies, and skeletal defects. Many oral manifestations have been reported, not only including hypoplastic and malformed teeth, and mucosal papillomatosis, but also ankyloglossia, hemihyperplastic tongue, intraoral nevus, giant cell granuloma, ameloblastoma, bone cysts, follicular cysts, oligodontia, and odontodysplasia. Sebaceous nevi follow the lines of Blaschko and these can continue as linear intraoral lesions, as in mucosal papillomatosis.<ref>PMID:22683711</ref> [[http://www.uniprot.org/uniprot/SOS1_HUMAN SOS1_HUMAN]] Defects in SOS1 are the cause of gingival fibromatosis 1 (GGF1) [MIM:[http://omim.org/entry/135300 135300]]; also known as GINGF1. Gingival fibromatosis is a rare overgrowth condition characterized by a benign, slowly progressive, nonhemorrhagic, fibrous enlargement of maxillary and mandibular keratinized gingiva. GGF1 is usually transmitted as an autosomal dominant trait, although sporadic cases are common.<ref>PMID:11868160</ref> Defects in SOS1 are the cause of Noonan syndrome type 4 (NS4) [MIM:[http://omim.org/entry/610733 610733]]. NS4 is an autosomal dominant disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS4 is associated with juvenile myelomonocytic leukemia (JMML). SOS1 mutations engender a high prevalence of pulmonary valve disease; atrial septal defects are less common.<ref>PMID:17143285</ref> <ref>PMID:17143282</ref> <ref>PMID:19020799</ref> <ref>PMID:19438935</ref> <ref>PMID:20683980</ref> <ref>PMID:20673819</ref> <ref>PMID:19953625</ref> <ref>PMID:21387466</ref> | |||
== Function == | |||
[[http://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN]] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.<ref>PMID:14500341</ref> <ref>PMID:9020151</ref> <ref>PMID:12740440</ref> [[http://www.uniprot.org/uniprot/SOS1_HUMAN SOS1_HUMAN]] Promotes the exchange of Ras-bound GDP by GTP. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Son of sevenless homologue 1 (SOS1) is a guanine nucleotide exchange factor that catalyzes the exchange of GDP for GTP on RAS. In its active form, GTP-bound RAS is responsible for numerous critical cellular processes. Aberrant RAS activity is involved in ~30% of all human cancers; hence, SOS1 is an attractive therapeutic target for its role in modulating RAS activation. Here, we describe a new series of benzimidazole-derived SOS1 agonists. Using structure-guided design, we discovered small molecules that increase nucleotide exchange on RAS in vitro at sub-micromolar concentrations, bind to SOS1 with low double digit nanomolar affinity, rapidly enhance cellular RAS-GTP levels, and invoke biphasic signaling changes in phosphorylation of ERK 1/2. These compounds represent the most potent series of SOS1 agonists reported to date. | |||
Discovery and Structure-Based Optimization of Benzimidazole-Derived Activators of SOS1-Mediated Nucleotide Exchange on RAS.,Hodges TR, Abbott JR, Little AJ, Sarkar D, Salovich JM, Howes J, Akan DT, Sai J, Arnold AL, Browning C, Burns MC, Sobolik T, Sun Q, Beesetty Y, Coker J, Scharn D, Stadtmueller H, Rossanese OW, Phan J, Waterson AG, McConnell DB, Fesik SW J Med Chem. 2018 Sep 11. doi: 10.1021/acs.jmedchem.8b01108. PMID:30205005<ref>PMID:30205005</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
[[Category: | <div class="pdbe-citations 6d59" style="background-color:#fffaf0;"></div> | ||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Fesik, S W]] | |||
[[Category: Hodges, T]] | |||
[[Category: Phan, J]] | [[Category: Phan, J]] | ||
[[Category: | [[Category: Inhibitor]] | ||
[[Category: Mapk]] | |||
[[Category: Oncoprotein]] | |||
[[Category: Protein-protein complex]] | |||
[[Category: Ra]] | |||
[[Category: Signaling protein]] | |||
[[Category: So]] |
Revision as of 22:47, 19 September 2018
Ras:SOS:Ras in complex with a small molecule activatorRas:SOS:Ras in complex with a small molecule activator
Structural highlights
Disease[RASH_HUMAN] Defects in HRAS are the cause of faciocutaneoskeletal syndrome (FCSS) [MIM:218040]. A rare condition characterized by prenatally increased growth, postnatal growth deficiency, mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy and/or atrial tachycardia), tumor predisposition, skin and musculoskeletal abnormalities.[1] [2] [3] [4] [5] [6] [7] Defects in HRAS are the cause of congenital myopathy with excess of muscle spindles (CMEMS) [MIM:218040]. CMEMS is a variant of Costello syndrome.[8] Defects in HRAS may be a cause of susceptibility to Hurthle cell thyroid carcinoma (HCTC) [MIM:607464]. Hurthle cell thyroid carcinoma accounts for approximately 3% of all thyroid cancers. Although they are classified as variants of follicular neoplasms, they are more often multifocal and somewhat more aggressive and are less likely to take up iodine than are other follicular neoplasms. Note=Mutations which change positions 12, 13 or 61 activate the potential of HRAS to transform cultured cells and are implicated in a variety of human tumors. Defects in HRAS are a cause of susceptibility to bladder cancer (BLC) [MIM:109800]. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences. Note=Defects in HRAS are the cause of oral squamous cell carcinoma (OSCC).[9] Defects in HRAS are the cause of Schimmelpenning-Feuerstein-Mims syndrome (SFM) [MIM:163200]. A disease characterized by sebaceous nevi, often on the face, associated with variable ipsilateral abnormalities of the central nervous system, ocular anomalies, and skeletal defects. Many oral manifestations have been reported, not only including hypoplastic and malformed teeth, and mucosal papillomatosis, but also ankyloglossia, hemihyperplastic tongue, intraoral nevus, giant cell granuloma, ameloblastoma, bone cysts, follicular cysts, oligodontia, and odontodysplasia. Sebaceous nevi follow the lines of Blaschko and these can continue as linear intraoral lesions, as in mucosal papillomatosis.[10] [SOS1_HUMAN] Defects in SOS1 are the cause of gingival fibromatosis 1 (GGF1) [MIM:135300]; also known as GINGF1. Gingival fibromatosis is a rare overgrowth condition characterized by a benign, slowly progressive, nonhemorrhagic, fibrous enlargement of maxillary and mandibular keratinized gingiva. GGF1 is usually transmitted as an autosomal dominant trait, although sporadic cases are common.[11] Defects in SOS1 are the cause of Noonan syndrome type 4 (NS4) [MIM:610733]. NS4 is an autosomal dominant disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS4 is associated with juvenile myelomonocytic leukemia (JMML). SOS1 mutations engender a high prevalence of pulmonary valve disease; atrial septal defects are less common.[12] [13] [14] [15] [16] [17] [18] [19] Function[RASH_HUMAN] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.[20] [21] [22] [SOS1_HUMAN] Promotes the exchange of Ras-bound GDP by GTP. Publication Abstract from PubMedSon of sevenless homologue 1 (SOS1) is a guanine nucleotide exchange factor that catalyzes the exchange of GDP for GTP on RAS. In its active form, GTP-bound RAS is responsible for numerous critical cellular processes. Aberrant RAS activity is involved in ~30% of all human cancers; hence, SOS1 is an attractive therapeutic target for its role in modulating RAS activation. Here, we describe a new series of benzimidazole-derived SOS1 agonists. Using structure-guided design, we discovered small molecules that increase nucleotide exchange on RAS in vitro at sub-micromolar concentrations, bind to SOS1 with low double digit nanomolar affinity, rapidly enhance cellular RAS-GTP levels, and invoke biphasic signaling changes in phosphorylation of ERK 1/2. These compounds represent the most potent series of SOS1 agonists reported to date. Discovery and Structure-Based Optimization of Benzimidazole-Derived Activators of SOS1-Mediated Nucleotide Exchange on RAS.,Hodges TR, Abbott JR, Little AJ, Sarkar D, Salovich JM, Howes J, Akan DT, Sai J, Arnold AL, Browning C, Burns MC, Sobolik T, Sun Q, Beesetty Y, Coker J, Scharn D, Stadtmueller H, Rossanese OW, Phan J, Waterson AG, McConnell DB, Fesik SW J Med Chem. 2018 Sep 11. doi: 10.1021/acs.jmedchem.8b01108. PMID:30205005[23] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|