6dff: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
'''Unreleased structure'''


The entry 6dff is ON HOLD until Paper Publication
==Structure of the cargo bound AP-1:Arf1:tetherin-Nef monomer==
<StructureSection load='6dff' size='340' side='right' caption='[[6dff]], [[Resolution|resolution]] 3.90&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[6dff]] is a 8 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DFF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6DFF FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GTP:GUANOSINE-5-TRIPHOSPHATE'>GTP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6dff FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6dff OCA], [http://pdbe.org/6dff PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6dff RCSB], [http://www.ebi.ac.uk/pdbsum/6dff PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6dff ProSAT]</span></td></tr>
</table>
== Disease ==
[[http://www.uniprot.org/uniprot/AP1S3_HUMAN AP1S3_HUMAN]] Acrodermatitis continua suppurativa of Hallopeau;Generalized pustular psoriasis;Pustulosis palmaris et plantaris. Disease susceptibility is associated with variations affecting the gene represented in this entry.
== Function ==
[[http://www.uniprot.org/uniprot/AP1S3_HUMAN AP1S3_HUMAN]] Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. Involved in TLR3 trafficking (PubMed:24791904).<ref>PMID:24791904</ref>  [[http://www.uniprot.org/uniprot/AP1G1_MOUSE AP1G1_MOUSE]] Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. [[http://www.uniprot.org/uniprot/BST2_HUMAN BST2_HUMAN]] IFN-induced antiviral host restriction factor which efficiently blocks the release of diverse mammalian enveloped viruses by directly tethering nascent virions to the membranes of infected cells. Acts as a direct physical tether, holding virions to the cell membrane and linking virions to each other. The tethered virions can be internalized by endocytosis and subsequently degraded or they can remain on the cell surface. In either case, their spread as cell-free virions is restricted. Its target viruses belong to diverse families, including retroviridae: human immunodeficiency virus type 1 (HIV-1), human immunodeficiency virus type 2 (HIV-2), simian immunodeficiency viruses (SIVs), equine infectious anemia virus (EIAV), feline immunodeficiency virus (FIV), prototype foamy virus (PFV), Mason-Pfizer monkey virus (MPMV), human T-cell leukemia virus type 1 (HTLV-1), Rous sarcoma virus (RSV) and murine leukemia virus (MLV), flavivirideae: hepatitis C virus (HCV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), arenaviridae: lassa virus (LASV) and machupo virus (MACV), herpesviridae: kaposis sarcoma-associated herpesvirus (KSHV), rhabdoviridae: vesicular stomatitis virus (VSV), orthomyxoviridae: influenza A virus, and paramyxoviridae: nipah virus. Can inhibit cell surface proteolytic activity of MMP14 causing decreased activation of MMP15 which results in inhibition of cell growth and migration. Can stimulate signaling by LILRA4/ILT7 and consequently provide negative feedback to the production of IFN by plasmacytoid dendritic cells in response to viral infection. Plays a role in the organization of the subapical actin cytoskeleton in polarized epithelial cells.<ref>PMID:18342597</ref> <ref>PMID:18200009</ref> <ref>PMID:19879838</ref> <ref>PMID:19564354</ref> <ref>PMID:19036818</ref> <ref>PMID:19179289</ref> <ref>PMID:20686043</ref> <ref>PMID:20943977</ref> <ref>PMID:20419159</ref> <ref>PMID:21529378</ref> <ref>PMID:21621240</ref> <ref>PMID:22065321</ref> <ref>PMID:22520941</ref> <ref>PMID:20399176</ref> <ref>PMID:20940320</ref> [[http://www.uniprot.org/uniprot/ARF1_HUMAN ARF1_HUMAN]] GTP-binding protein that functions as an allosteric activator of the cholera toxin catalytic subunit, an ADP-ribosyltransferase. Involved in protein trafficking among different compartments. Modulates vesicle budding and uncoating within the Golgi complex. Deactivation induces the redistribution of the entire Golgi complex to the endoplasmic reticulum, suggesting a crucial role in protein trafficking. In its GTP-bound form, its triggers the association with coat proteins with the Golgi membrane. The hydrolysis of ARF1-bound GTP, which is mediated by ARFGAPs proteins, is required for dissociation of coat proteins from Golgi membranes and vesicles. [[http://www.uniprot.org/uniprot/AP1B1_HUMAN AP1B1_HUMAN]] Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. [[http://www.uniprot.org/uniprot/AP1M1_MOUSE AP1M1_MOUSE]] Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the trans-Golgi network (TGN) and endosomes. The AP complexes mediate the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The HIV accessory protein Nef counteracts immune defenses by subverting coated vesicle pathways. The 3.7 A cryo-EM structure of a closed trimer of the clathrin adaptor AP-1, the small GTPase Arf1, HIV-1 Nef, and the cytosolic tail of the restriction factor tetherin suggested a mechanism for inactivating tetherin by Golgi retention. The 4.3 A structure of a mutant Nef-induced dimer of AP-1 showed how the closed trimer is regulated by the dileucine loop of Nef. HDX-MS and mutational analysis were used to show how cargo dynamics leads to alternative Arf1 trimerization, directing Nef targets to be either retained at the trans-Golgi or sorted to lysosomes. Phosphorylation of the NL4-3 M-Nef was shown to regulate AP-1 trimerization, explaining how O-Nefs lacking this phosphosite counteract tetherin but most M-Nefs do not. These observations show how the higher-order organization of a vesicular coat can be allosterically modulated to direct cargoes to distinct fates.


Authors: Morris, K.L., Buffalo, C.Z., Ren, X., Hurley, J.H.
HIV-1 Nefs Are Cargo-Sensitive AP-1 Trimerization Switches in Tetherin Downregulation.,Morris KL, Buffalo CZ, Sturzel CM, Heusinger E, Kirchhoff F, Ren X, Hurley JH Cell. 2018 Jul 26;174(3):659-671.e14. doi: 10.1016/j.cell.2018.07.004. PMID:30053425<ref>PMID:30053425</ref>


Description: Structure of the cargo bound AP-1:Arf1:tetherin-Nef monomer
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
[[Category: Morris, K.L]]
<div class="pdbe-citations 6dff" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Buffalo, C Z]]
[[Category: Hurley, J H]]
[[Category: Morris, K L]]
[[Category: Ren, X]]
[[Category: Ren, X]]
[[Category: Buffalo, C.Z]]
[[Category: Ap]]
[[Category: Hurley, J.H]]
[[Category: Hiv]]
[[Category: Nef]]
[[Category: Protein transport]]
[[Category: Trafficking]]
[[Category: Transport protein]]
[[Category: Viral protein]]

Revision as of 00:49, 10 August 2018

Structure of the cargo bound AP-1:Arf1:tetherin-Nef monomerStructure of the cargo bound AP-1:Arf1:tetherin-Nef monomer

Structural highlights

6dff is a 8 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[AP1S3_HUMAN] Acrodermatitis continua suppurativa of Hallopeau;Generalized pustular psoriasis;Pustulosis palmaris et plantaris. Disease susceptibility is associated with variations affecting the gene represented in this entry.

Function

[AP1S3_HUMAN] Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. Involved in TLR3 trafficking (PubMed:24791904).[1] [AP1G1_MOUSE] Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. [BST2_HUMAN] IFN-induced antiviral host restriction factor which efficiently blocks the release of diverse mammalian enveloped viruses by directly tethering nascent virions to the membranes of infected cells. Acts as a direct physical tether, holding virions to the cell membrane and linking virions to each other. The tethered virions can be internalized by endocytosis and subsequently degraded or they can remain on the cell surface. In either case, their spread as cell-free virions is restricted. Its target viruses belong to diverse families, including retroviridae: human immunodeficiency virus type 1 (HIV-1), human immunodeficiency virus type 2 (HIV-2), simian immunodeficiency viruses (SIVs), equine infectious anemia virus (EIAV), feline immunodeficiency virus (FIV), prototype foamy virus (PFV), Mason-Pfizer monkey virus (MPMV), human T-cell leukemia virus type 1 (HTLV-1), Rous sarcoma virus (RSV) and murine leukemia virus (MLV), flavivirideae: hepatitis C virus (HCV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), arenaviridae: lassa virus (LASV) and machupo virus (MACV), herpesviridae: kaposis sarcoma-associated herpesvirus (KSHV), rhabdoviridae: vesicular stomatitis virus (VSV), orthomyxoviridae: influenza A virus, and paramyxoviridae: nipah virus. Can inhibit cell surface proteolytic activity of MMP14 causing decreased activation of MMP15 which results in inhibition of cell growth and migration. Can stimulate signaling by LILRA4/ILT7 and consequently provide negative feedback to the production of IFN by plasmacytoid dendritic cells in response to viral infection. Plays a role in the organization of the subapical actin cytoskeleton in polarized epithelial cells.[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [ARF1_HUMAN] GTP-binding protein that functions as an allosteric activator of the cholera toxin catalytic subunit, an ADP-ribosyltransferase. Involved in protein trafficking among different compartments. Modulates vesicle budding and uncoating within the Golgi complex. Deactivation induces the redistribution of the entire Golgi complex to the endoplasmic reticulum, suggesting a crucial role in protein trafficking. In its GTP-bound form, its triggers the association with coat proteins with the Golgi membrane. The hydrolysis of ARF1-bound GTP, which is mediated by ARFGAPs proteins, is required for dissociation of coat proteins from Golgi membranes and vesicles. [AP1B1_HUMAN] Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. [AP1M1_MOUSE] Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the trans-Golgi network (TGN) and endosomes. The AP complexes mediate the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules.

Publication Abstract from PubMed

The HIV accessory protein Nef counteracts immune defenses by subverting coated vesicle pathways. The 3.7 A cryo-EM structure of a closed trimer of the clathrin adaptor AP-1, the small GTPase Arf1, HIV-1 Nef, and the cytosolic tail of the restriction factor tetherin suggested a mechanism for inactivating tetherin by Golgi retention. The 4.3 A structure of a mutant Nef-induced dimer of AP-1 showed how the closed trimer is regulated by the dileucine loop of Nef. HDX-MS and mutational analysis were used to show how cargo dynamics leads to alternative Arf1 trimerization, directing Nef targets to be either retained at the trans-Golgi or sorted to lysosomes. Phosphorylation of the NL4-3 M-Nef was shown to regulate AP-1 trimerization, explaining how O-Nefs lacking this phosphosite counteract tetherin but most M-Nefs do not. These observations show how the higher-order organization of a vesicular coat can be allosterically modulated to direct cargoes to distinct fates.

HIV-1 Nefs Are Cargo-Sensitive AP-1 Trimerization Switches in Tetherin Downregulation.,Morris KL, Buffalo CZ, Sturzel CM, Heusinger E, Kirchhoff F, Ren X, Hurley JH Cell. 2018 Jul 26;174(3):659-671.e14. doi: 10.1016/j.cell.2018.07.004. PMID:30053425[17]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Setta-Kaffetzi N, Simpson MA, Navarini AA, Patel VM, Lu HC, Allen MH, Duckworth M, Bachelez H, Burden AD, Choon SE, Griffiths CE, Kirby B, Kolios A, Seyger MM, Prins C, Smahi A, Trembath RC, Fraternali F, Smith CH, Barker JN, Capon F. AP1S3 mutations are associated with pustular psoriasis and impaired Toll-like receptor 3 trafficking. Am J Hum Genet. 2014 May 1;94(5):790-7. doi: 10.1016/j.ajhg.2014.04.005. PMID:24791904 doi:http://dx.doi.org/10.1016/j.ajhg.2014.04.005
  2. Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, Johnson MC, Stephens EB, Guatelli J. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe. 2008 Apr 17;3(4):245-52. doi: 10.1016/j.chom.2008.03.001. Epub, 2008 Mar 13. PMID:18342597 doi:10.1016/j.chom.2008.03.001
  3. Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008 Jan 24;451(7177):425-30. doi: 10.1038/nature06553. Epub 2008 Jan 16. PMID:18200009 doi:10.1038/nature06553
  4. Perez-Caballero D, Zang T, Ebrahimi A, McNatt MW, Gregory DA, Johnson MC, Bieniasz PD. Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell. 2009 Oct 30;139(3):499-511. doi: 10.1016/j.cell.2009.08.039. PMID:19879838 doi:10.1016/j.cell.2009.08.039
  5. Cao W, Bover L, Cho M, Wen X, Hanabuchi S, Bao M, Rosen DB, Wang YH, Shaw JL, Du Q, Li C, Arai N, Yao Z, Lanier LL, Liu YJ. Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. J Exp Med. 2009 Jul 6;206(7):1603-14. doi: 10.1084/jem.20090547. Epub 2009 Jun, 29. PMID:19564354 doi:10.1084/jem.20090547
  6. Jouvenet N, Neil SJ, Zhadina M, Zang T, Kratovac Z, Lee Y, McNatt M, Hatziioannou T, Bieniasz PD. Broad-spectrum inhibition of retroviral and filoviral particle release by tetherin. J Virol. 2009 Feb;83(4):1837-44. doi: 10.1128/JVI.02211-08. Epub 2008 Nov 26. PMID:19036818 doi:10.1128/JVI.02211-08
  7. Kaletsky RL, Francica JR, Agrawal-Gamse C, Bates P. Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2886-91. doi:, 10.1073/pnas.0811014106. Epub 2009 Jan 28. PMID:19179289 doi:10.1073/pnas.0811014106
  8. Radoshitzky SR, Dong L, Chi X, Clester JC, Retterer C, Spurgers K, Kuhn JH, Sandwick S, Ruthel G, Kota K, Boltz D, Warren T, Kranzusch PJ, Whelan SP, Bavari S. Infectious Lassa virus, but not filoviruses, is restricted by BST-2/tetherin. J Virol. 2010 Oct;84(20):10569-80. doi: 10.1128/JVI.00103-10. Epub 2010 Aug 4. PMID:20686043 doi:10.1128/JVI.00103-10
  9. Weidner JM, Jiang D, Pan XB, Chang J, Block TM, Guo JT. Interferon-induced cell membrane proteins, IFITM3 and tetherin, inhibit vesicular stomatitis virus infection via distinct mechanisms. J Virol. 2010 Dec;84(24):12646-57. doi: 10.1128/JVI.01328-10. Epub 2010 Oct 13. PMID:20943977 doi:10.1128/JVI.01328-10
  10. Pardieu C, Vigan R, Wilson SJ, Calvi A, Zang T, Bieniasz P, Kellam P, Towers GJ, Neil SJ. The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin. PLoS Pathog. 2010 Apr 15;6(4):e1000843. doi: 10.1371/journal.ppat.1000843. PMID:20419159 doi:10.1371/journal.ppat.1000843
  11. Xu F, Tan J, Liu R, Xu D, Li Y, Geng Y, Liang C, Qiao W. Tetherin inhibits prototypic foamy virus release. Virol J. 2011 May 2;8:198. doi: 10.1186/1743-422X-8-198. PMID:21529378 doi:10.1186/1743-422X-8-198
  12. Watanabe R, Leser GP, Lamb RA. Influenza virus is not restricted by tetherin whereas influenza VLP production is restricted by tetherin. Virology. 2011 Aug 15;417(1):50-6. doi: 10.1016/j.virol.2011.05.006. Epub 2011, May 28. PMID:21621240 doi:10.1016/j.virol.2011.05.006
  13. Gu G, Zhao D, Yin Z, Liu P. BST-2 binding with cellular MT1-MMP blocks cell growth and migration via decreasing MMP2 activity. J Cell Biochem. 2012 Mar;113(3):1013-21. doi: 10.1002/jcb.23433. PMID:22065321 doi:10.1002/jcb.23433
  14. Dafa-Berger A, Kuzmina A, Fassler M, Yitzhak-Asraf H, Shemer-Avni Y, Taube R. Modulation of hepatitis C virus release by the interferon-induced protein BST-2/tetherin. Virology. 2012 Jul 5;428(2):98-111. doi: 10.1016/j.virol.2012.03.011. Epub 2012, Apr 20. PMID:22520941 doi:10.1016/j.virol.2012.03.011
  15. Hinz A, Miguet N, Natrajan G, Usami Y, Yamanaka H, Renesto P, Hartlieb B, McCarthy AA, Simorre JP, Gottlinger H, Weissenhorn W. Structural basis of HIV-1 tethering to membranes by the BST-2/tetherin ectodomain. Cell Host Microbe. 2010 Apr 22;7(4):314-23. PMID:20399176 doi:10.1016/j.chom.2010.03.005
  16. Yang H, Wang J, Jia X, McNatt MW, Zang T, Pan B, Meng W, Wang HW, Bieniasz PD, Xiong Y. Structural insight into the mechanisms of enveloped virus tethering by tetherin. Proc Natl Acad Sci U S A. 2010 Oct 12. PMID:20940320 doi:10.1073/pnas.1011485107
  17. Morris KL, Buffalo CZ, Sturzel CM, Heusinger E, Kirchhoff F, Ren X, Hurley JH. HIV-1 Nefs Are Cargo-Sensitive AP-1 Trimerization Switches in Tetherin Downregulation. Cell. 2018 Jul 26;174(3):659-671.e14. doi: 10.1016/j.cell.2018.07.004. PMID:30053425 doi:http://dx.doi.org/10.1016/j.cell.2018.07.004

6dff, resolution 3.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA