2j77: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
== | |||
==Beta-glucosidase from Thermotoga maritima in complex with deoxynojirimycin== | |||
<StructureSection load='2j77' size='340' side='right' caption='[[2j77]], [[Resolution|resolution]] 2.10Å' scene=''> | <StructureSection load='2j77' size='340' side='right' caption='[[2j77]], [[Resolution|resolution]] 2.10Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
Line 6: | Line 7: | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1od0|1od0]], [[1oif|1oif]], [[1oin|1oin]], [[1uz1|1uz1]], [[1w3j|1w3j]], [[2cbu|2cbu]], [[2cbv|2cbv]], [[2ces|2ces]], [[2cet|2cet]], [[2j75|2j75]], [[2j78|2j78]], [[2j79|2j79]], [[2j7b|2j7b]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1od0|1od0]], [[1oif|1oif]], [[1oin|1oin]], [[1uz1|1uz1]], [[1w3j|1w3j]], [[2cbu|2cbu]], [[2cbv|2cbv]], [[2ces|2ces]], [[2cet|2cet]], [[2j75|2j75]], [[2j78|2j78]], [[2j79|2j79]], [[2j7b|2j7b]]</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Beta-glucosidase Beta-glucosidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.21 3.2.1.21] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Beta-glucosidase Beta-glucosidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.21 3.2.1.21] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2j77 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2j77 OCA], [http://pdbe.org/2j77 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2j77 RCSB], [http://www.ebi.ac.uk/pdbsum/2j77 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2j77 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2j77 OCA], [http://pdbe.org/2j77 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2j77 RCSB], [http://www.ebi.ac.uk/pdbsum/2j77 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2j77 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
Line 12: | Line 13: | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/j7/2j77_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/j7/2j77_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> |
Revision as of 10:16, 11 July 2018
Beta-glucosidase from Thermotoga maritima in complex with deoxynojirimycinBeta-glucosidase from Thermotoga maritima in complex with deoxynojirimycin
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe inhibition of glycoside hydrolases, through transition-state mimicry, is important both as a probe of enzyme mechanism and in the continuing quest for new drugs, notably in the treatment of cancer, HIV, influenza, and diabetes. The high affinity with which these enzymes are known to bind the transition state provides a framework upon which to design potent inhibitors. Recent work [for example, Bulow, A. et al. J. Am. Chem. Soc. 2000, 122, 8567-8568; Zechel, D. L. et al. J. Am. Chem. Soc. 2003, 125, 14313-14323] has revealed quite confusing and counter-intuitive patterns of inhibition for a number of glycosidase inhibitors. Here we describe a synergistic approach for analysis of inhibitors with a single enzyme 'model system', the Thermotoga maritima family 1 beta-glucosidase, TmGH1. The pH dependence of enzyme activity and inhibition has been determined, structures of inhibitor complexes have been solved by X-ray crystallography, with data up to 1.65 A resolution, and isothermal titration calorimetry was used to establish the thermodynamic signature. This has allowed the characterization of 18 compounds, all putative transition-state mimics, in order to build an 'inhibition profile' that provides an insight into what governs binding. In contrast to our preconceptions, there is little correlation of inhibitor chemistry with the calorimetric dissection of thermodynamics. The ensemble of inhibitors shows strong enthalpy-entropy compensation, and the random distribution of similar inhibitors across the plot of DeltaH degrees a vs TDeltaS degrees a likely reflects the enormous contribution of solvation and desolvation effects on ligand binding. Glycosidase inhibition: an assessment of the binding of 18 putative transition-state mimics.,Gloster TM, Meloncelli P, Stick RV, Zechel D, Vasella A, Davies GJ J Am Chem Soc. 2007 Feb 28;129(8):2345-54. Epub 2007 Feb 6. PMID:17279749[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|