6av7: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
'''Unreleased structure'''


The entry 6av7 is ON HOLD until Paper Publication
==Structure of human endothelial nitric oxide synthase heme domain in complex with HW69==
<StructureSection load='6av7' size='340' side='right' caption='[[6av7]], [[Resolution|resolution]] 1.92&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[6av7]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6AV7 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6AV7 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BTB:2-[BIS-(2-HYDROXY-ETHYL)-AMINO]-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>BTB</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GD:GADOLINIUM+ATOM'>GD</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=H4B:5,6,7,8-TETRAHYDROBIOPTERIN'>H4B</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=W69:6-(2-{3-[3-(dimethylamino)propyl]-5-fluorophenyl}ethyl)-4-methylpyridin-2-amine'>W69</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6aur|6aur]], [[6aut|6aut]], [[6auq|6auq]], [[6aus|6aus]], [[6auz|6auz]], [[6av1|6av1]], [[6auy|6auy]], [[6av0|6av0]], [[6av2|6av2]], [[6av6|6av6]], [[6auu|6auu]], [[6auv|6auv]], [[6auw|6auw]], [[6aux|6aux]], [[6av3|6av3]], [[6av4|6av4]], [[6av5|6av5]]</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Nitric-oxide_synthase_(NADPH_dependent) Nitric-oxide synthase (NADPH dependent)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.14.13.39 1.14.13.39] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6av7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6av7 OCA], [http://pdbe.org/6av7 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6av7 RCSB], [http://www.ebi.ac.uk/pdbsum/6av7 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6av7 ProSAT]</span></td></tr>
</table>
== Function ==
[[http://www.uniprot.org/uniprot/NOS3_HUMAN NOS3_HUMAN]] Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway. NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets.<ref>PMID:17264164</ref>  Isoform eNOS13C: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1.<ref>PMID:17264164</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Inhibition of neuronal nitric oxide synthase (nNOS) is a promising therapeutic approach to treat neurodegenerative diseases. Recently, we have achieved considerable progress in improving the potency and isoform selectivity of human nNOS inhibitors bearing a 2-aminopyridine scaffold. However, these inhibitors still suffered from too low cell membrane permeability to enter into CNS drug development. We report herein our studies to improve permeability of nNOS inhibitors as measured by both PAMPA-BBB and Caco-2 assays. The most permeable compound (12) in this study still preserves excellent potency with human nNOS (Ki = 30 nM) and very high selectivity over other NOS isoforms, especially human eNOS (hnNOS/heNOS = 2799, the highest hnNOS/heNOS ratio we have obtained to date). X-ray crystallographic analysis reveals that 12 adopts a similar binding mode in both rat and human nNOS, in which the 2-aminopyridine and the fluorobenzene linker form crucial hydrogen bonds with glutamate and tyrosine residues, respectively.


Authors: Li, H., Poulos, T.L.
Improvement of Cell Permeability of Human Neuronal Nitric Oxide Synthase Inhibitors Using Potent and Selective 2-Aminopyridine-Based Scaffolds with a Fluorobenzene Linker.,Do HT, Wang HY, Li H, Chreifi G, Poulos TL, Silverman RB J Med Chem. 2017 Nov 22;60(22):9360-9375. doi: 10.1021/acs.jmedchem.7b01356. Epub, 2017 Nov 1. PMID:29091437<ref>PMID:29091437</ref>


Description: Structure of human endothelial nitric oxide synthase heme domain in complex with HW69
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
<div class="pdbe-citations 6av7" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Li, H]]
[[Category: Li, H]]
[[Category: Poulos, T.L]]
[[Category: Poulos, T L]]
[[Category: Nitric oxide synthase inhibitor complex heme enzyme]]
[[Category: Oxidoreductase]]

Revision as of 08:42, 11 July 2018

Structure of human endothelial nitric oxide synthase heme domain in complex with HW69Structure of human endothelial nitric oxide synthase heme domain in complex with HW69

Structural highlights

6av7 is a 4 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , , , , ,
Activity:Nitric-oxide synthase (NADPH dependent), with EC number 1.14.13.39
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[NOS3_HUMAN] Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway. NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets.[1] Isoform eNOS13C: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1.[2]

Publication Abstract from PubMed

Inhibition of neuronal nitric oxide synthase (nNOS) is a promising therapeutic approach to treat neurodegenerative diseases. Recently, we have achieved considerable progress in improving the potency and isoform selectivity of human nNOS inhibitors bearing a 2-aminopyridine scaffold. However, these inhibitors still suffered from too low cell membrane permeability to enter into CNS drug development. We report herein our studies to improve permeability of nNOS inhibitors as measured by both PAMPA-BBB and Caco-2 assays. The most permeable compound (12) in this study still preserves excellent potency with human nNOS (Ki = 30 nM) and very high selectivity over other NOS isoforms, especially human eNOS (hnNOS/heNOS = 2799, the highest hnNOS/heNOS ratio we have obtained to date). X-ray crystallographic analysis reveals that 12 adopts a similar binding mode in both rat and human nNOS, in which the 2-aminopyridine and the fluorobenzene linker form crucial hydrogen bonds with glutamate and tyrosine residues, respectively.

Improvement of Cell Permeability of Human Neuronal Nitric Oxide Synthase Inhibitors Using Potent and Selective 2-Aminopyridine-Based Scaffolds with a Fluorobenzene Linker.,Do HT, Wang HY, Li H, Chreifi G, Poulos TL, Silverman RB J Med Chem. 2017 Nov 22;60(22):9360-9375. doi: 10.1021/acs.jmedchem.7b01356. Epub, 2017 Nov 1. PMID:29091437[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Lorenz M, Hewing B, Hui J, Zepp A, Baumann G, Bindereif A, Stangl V, Stangl K. Alternative splicing in intron 13 of the human eNOS gene: a potential mechanism for regulating eNOS activity. FASEB J. 2007 May;21(7):1556-64. Epub 2007 Jan 30. PMID:17264164 doi:http://dx.doi.org/10.1096/fj.06-7434com
  2. Lorenz M, Hewing B, Hui J, Zepp A, Baumann G, Bindereif A, Stangl V, Stangl K. Alternative splicing in intron 13 of the human eNOS gene: a potential mechanism for regulating eNOS activity. FASEB J. 2007 May;21(7):1556-64. Epub 2007 Jan 30. PMID:17264164 doi:http://dx.doi.org/10.1096/fj.06-7434com
  3. Do HT, Wang HY, Li H, Chreifi G, Poulos TL, Silverman RB. Improvement of Cell Permeability of Human Neuronal Nitric Oxide Synthase Inhibitors Using Potent and Selective 2-Aminopyridine-Based Scaffolds with a Fluorobenzene Linker. J Med Chem. 2017 Nov 22;60(22):9360-9375. doi: 10.1021/acs.jmedchem.7b01356. Epub, 2017 Nov 1. PMID:29091437 doi:http://dx.doi.org/10.1021/acs.jmedchem.7b01356

6av7, resolution 1.92Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA