6auw: Difference between revisions
m Protected "6auw" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
==Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-Methyl-6-(2-(5-(4-((methylamino)methyl)phenyl)pyridin-3-yl)ethyl)pyridin-2-amine== | |||
<StructureSection load='6auw' size='340' side='right' caption='[[6auw]], [[Resolution|resolution]] 1.70Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[6auw]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6AUW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6AUW FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=H4B:5,6,7,8-TETRAHYDROBIOPTERIN'>H4B</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=W80:4-methyl-6-[2-(5-{4-[(methylamino)methyl]phenyl}pyridin-3-yl)ethyl]pyridin-2-amine'>W80</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Nitric-oxide_synthase_(NADPH_dependent) Nitric-oxide synthase (NADPH dependent)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.14.13.39 1.14.13.39] </span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6auw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6auw OCA], [http://pdbe.org/6auw PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6auw RCSB], [http://www.ebi.ac.uk/pdbsum/6auw PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6auw ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[[http://www.uniprot.org/uniprot/NOS1_RAT NOS1_RAT]] Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In the brain and peripheral nervous system, NO displays many properties of a neurotransmitter. Inhibitory transmitter for non-adrenergic and non-cholinergic nerves in the colorectum. Probably has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such SRR. Inhibitory transmitter for non-adrenergic and non-cholinergic nerves in the colorectum. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Inhibition of neuronal nitric oxide synthase (nNOS) is a promising therapeutic approach to treat neurodegenerative diseases. Recently, we have achieved considerable progress in improving the potency and isoform selectivity of human nNOS inhibitors bearing a 2-aminopyridine scaffold. However, these inhibitors still suffered from too low cell membrane permeability to enter into CNS drug development. We report herein our studies to improve permeability of nNOS inhibitors as measured by both PAMPA-BBB and Caco-2 assays. The most permeable compound (12) in this study still preserves excellent potency with human nNOS (Ki = 30 nM) and very high selectivity over other NOS isoforms, especially human eNOS (hnNOS/heNOS = 2799, the highest hnNOS/heNOS ratio we have obtained to date). X-ray crystallographic analysis reveals that 12 adopts a similar binding mode in both rat and human nNOS, in which the 2-aminopyridine and the fluorobenzene linker form crucial hydrogen bonds with glutamate and tyrosine residues, respectively. | |||
Improvement of Cell Permeability of Human Neuronal Nitric Oxide Synthase Inhibitors Using Potent and Selective 2-Aminopyridine-Based Scaffolds with a Fluorobenzene Linker.,Do HT, Wang HY, Li H, Chreifi G, Poulos TL, Silverman RB J Med Chem. 2017 Nov 22;60(22):9360-9375. doi: 10.1021/acs.jmedchem.7b01356. Epub, 2017 Nov 1. PMID:29091437<ref>PMID:29091437</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 6auw" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Li, H]] | [[Category: Li, H]] | ||
[[Category: Poulos, T L]] | |||
[[Category: Nitric oxide synthase inhibitor heme enzyme]] | |||
[[Category: Oxidoreductase]] | |||
[[Category: Oxidoreductase-inhibitor complex]] |
Revision as of 08:41, 11 July 2018
Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-Methyl-6-(2-(5-(4-((methylamino)methyl)phenyl)pyridin-3-yl)ethyl)pyridin-2-amineStructure of rat neuronal nitric oxide synthase heme domain in complex with 4-Methyl-6-(2-(5-(4-((methylamino)methyl)phenyl)pyridin-3-yl)ethyl)pyridin-2-amine
Structural highlights
Function[NOS1_RAT] Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In the brain and peripheral nervous system, NO displays many properties of a neurotransmitter. Inhibitory transmitter for non-adrenergic and non-cholinergic nerves in the colorectum. Probably has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such SRR. Inhibitory transmitter for non-adrenergic and non-cholinergic nerves in the colorectum. Publication Abstract from PubMedInhibition of neuronal nitric oxide synthase (nNOS) is a promising therapeutic approach to treat neurodegenerative diseases. Recently, we have achieved considerable progress in improving the potency and isoform selectivity of human nNOS inhibitors bearing a 2-aminopyridine scaffold. However, these inhibitors still suffered from too low cell membrane permeability to enter into CNS drug development. We report herein our studies to improve permeability of nNOS inhibitors as measured by both PAMPA-BBB and Caco-2 assays. The most permeable compound (12) in this study still preserves excellent potency with human nNOS (Ki = 30 nM) and very high selectivity over other NOS isoforms, especially human eNOS (hnNOS/heNOS = 2799, the highest hnNOS/heNOS ratio we have obtained to date). X-ray crystallographic analysis reveals that 12 adopts a similar binding mode in both rat and human nNOS, in which the 2-aminopyridine and the fluorobenzene linker form crucial hydrogen bonds with glutamate and tyrosine residues, respectively. Improvement of Cell Permeability of Human Neuronal Nitric Oxide Synthase Inhibitors Using Potent and Selective 2-Aminopyridine-Based Scaffolds with a Fluorobenzene Linker.,Do HT, Wang HY, Li H, Chreifi G, Poulos TL, Silverman RB J Med Chem. 2017 Nov 22;60(22):9360-9375. doi: 10.1021/acs.jmedchem.7b01356. Epub, 2017 Nov 1. PMID:29091437[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|