5xpl: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='5xpl' size='340' side='right' caption='[[5xpl]], [[Resolution|resolution]] 2.05Å' scene=''> | <StructureSection load='5xpl' size='340' side='right' caption='[[5xpl]], [[Resolution|resolution]] 2.05Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5xpl]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5XPL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5XPL FirstGlance]. <br> | <table><tr><td colspan='2'>[[5xpl]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat] and [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5XPL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5XPL FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=8C9:(4~{S})-4-[(1~{R})-1-[(1~{R},3~{a}~{S},4~{E},7~{a}~{R})-7~{a}-methyl-4-[2-[(3~{R},5~{R})-4-methylidene-3,5-bis(oxidanyl)cyclohexylidene]ethylidene]-2,3,3~{a},5,6,7-hexahydro-1~{H}-inden-1-yl]ethyl]-1-(4-hydroxyphenyl)octan-1-one'>8C9</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=8C9:(4~{S})-4-[(1~{R})-1-[(1~{R},3~{a}~{S},4~{E},7~{a}~{R})-7~{a}-methyl-4-[2-[(3~{R},5~{R})-4-methylidene-3,5-bis(oxidanyl)cyclohexylidene]ethylidene]-2,3,3~{a},5,6,7-hexahydro-1~{H}-inden-1-yl]ethyl]-1-(4-hydroxyphenyl)octan-1-one'>8C9</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Vdr, Nr1i1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Buffalo rat]), NCOA2, BHLHE75, SRC2, TIF2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5xpl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5xpl OCA], [http://pdbe.org/5xpl PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5xpl RCSB], [http://www.ebi.ac.uk/pdbsum/5xpl PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5xpl ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5xpl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5xpl OCA], [http://pdbe.org/5xpl PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5xpl RCSB], [http://www.ebi.ac.uk/pdbsum/5xpl PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5xpl ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 11: | Line 12: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/VDR_RAT VDR_RAT]] Nuclear hormone receptor. Transcription factor that mediates the action of vitamin D3 by controlling the expression of hormone sensitive genes. Regulates transcription of hormone sensitive genes via its association with the WINAC complex, a chromatin-remodeling complex. Recruited to promoters via its interaction with the WINAC complex subunit BAZ1B/WSTF, which mediates the interaction with acetylated histones, an essential step for VDR-promoter association. Plays a central role in calcium homeostasis.<ref>PMID:17227670</ref> [[http://www.uniprot.org/uniprot/NCOA2_HUMAN NCOA2_HUMAN]] Transcriptional coactivator for steroid receptors and nuclear receptors. Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1). Required with NCOA1 to control energy balance between white and brown adipose tissues.<ref>PMID:9430642</ref> | [[http://www.uniprot.org/uniprot/VDR_RAT VDR_RAT]] Nuclear hormone receptor. Transcription factor that mediates the action of vitamin D3 by controlling the expression of hormone sensitive genes. Regulates transcription of hormone sensitive genes via its association with the WINAC complex, a chromatin-remodeling complex. Recruited to promoters via its interaction with the WINAC complex subunit BAZ1B/WSTF, which mediates the interaction with acetylated histones, an essential step for VDR-promoter association. Plays a central role in calcium homeostasis.<ref>PMID:17227670</ref> [[http://www.uniprot.org/uniprot/NCOA2_HUMAN NCOA2_HUMAN]] Transcriptional coactivator for steroid receptors and nuclear receptors. Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1). Required with NCOA1 to control energy balance between white and brown adipose tissues.<ref>PMID:9430642</ref> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Vitamin D receptor (VDR) antagonists can be classified into two categories: the first category of VDR antagonists, which do not stabilize the helix 11-12, and the second category of antagonists, which destabilize the helix 6-7 region. To elucidate the mechanism underlying the first category antagonists by using the crystal structure, we designed and synthesized several VDR ligands with a p-hydroxyphenyl group at the C25-position. Of these, 22S-butyl-25-carbonyl analogue 5b and 25-di-p-hydoroxyphenyl analogues 6a,b showed strong antagonistic activity. We succeeded in cocrystallizing the ligand-binding domain of VDR complexed with 5b and found that the structure showed an alternative conformation of the helix 11-12 that explained the mechanism of the first category antagonists. Taking the present and previous studies together, we could elucidate the mechanisms underlying first and second categories antagonists based on individual crystal structures. This study provides significant insights into antagonism against not only VDR but also nuclear receptors. | |||
Vitamin D Analogues with a p-Hydroxyphenyl Group at the C25 Position: Crystal Structure of Vitamin D Receptor Ligand-Binding Domain Complexed with the Ligand Explains the Mechanism Underlying Full Antagonistic Action.,Kato A, Yamao M, Hashihara Y, Ishida H, Itoh T, Yamamoto K J Med Chem. 2017 Oct 26;60(20):8394-8406. doi: 10.1021/acs.jmedchem.7b00819. Epub, 2017 Oct 10. PMID:28954197<ref>PMID:28954197</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 5xpl" style="background-color:#fffaf0;"></div> | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Buffalo rat]] | |||
[[Category: Human]] | |||
[[Category: Itoh, T]] | [[Category: Itoh, T]] | ||
[[Category: Kato, A]] | [[Category: Kato, A]] |
Revision as of 11:04, 14 June 2018
Crystal structure of VDR-LBD complexed with 22S-butyl-25-hydroxyphenyl-2-methylidene-19,26,27-trinor-25-oxo-1-hydroxyvitamin D3Crystal structure of VDR-LBD complexed with 22S-butyl-25-hydroxyphenyl-2-methylidene-19,26,27-trinor-25-oxo-1-hydroxyvitamin D3
Structural highlights
Disease[NCOA2_HUMAN] Note=Chromosomal aberrations involving NCOA2 may be a cause of acute myeloid leukemias. Inversion inv(8)(p11;q13) generates the KAT6A-NCOA2 oncogene, which consists of the N-terminal part of KAT6A and the C-terminal part of NCOA2/TIF2. KAT6A-NCOA2 binds to CREBBP and disrupts its function in transcription activation. Function[VDR_RAT] Nuclear hormone receptor. Transcription factor that mediates the action of vitamin D3 by controlling the expression of hormone sensitive genes. Regulates transcription of hormone sensitive genes via its association with the WINAC complex, a chromatin-remodeling complex. Recruited to promoters via its interaction with the WINAC complex subunit BAZ1B/WSTF, which mediates the interaction with acetylated histones, an essential step for VDR-promoter association. Plays a central role in calcium homeostasis.[1] [NCOA2_HUMAN] Transcriptional coactivator for steroid receptors and nuclear receptors. Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1). Required with NCOA1 to control energy balance between white and brown adipose tissues.[2] Publication Abstract from PubMedVitamin D receptor (VDR) antagonists can be classified into two categories: the first category of VDR antagonists, which do not stabilize the helix 11-12, and the second category of antagonists, which destabilize the helix 6-7 region. To elucidate the mechanism underlying the first category antagonists by using the crystal structure, we designed and synthesized several VDR ligands with a p-hydroxyphenyl group at the C25-position. Of these, 22S-butyl-25-carbonyl analogue 5b and 25-di-p-hydoroxyphenyl analogues 6a,b showed strong antagonistic activity. We succeeded in cocrystallizing the ligand-binding domain of VDR complexed with 5b and found that the structure showed an alternative conformation of the helix 11-12 that explained the mechanism of the first category antagonists. Taking the present and previous studies together, we could elucidate the mechanisms underlying first and second categories antagonists based on individual crystal structures. This study provides significant insights into antagonism against not only VDR but also nuclear receptors. Vitamin D Analogues with a p-Hydroxyphenyl Group at the C25 Position: Crystal Structure of Vitamin D Receptor Ligand-Binding Domain Complexed with the Ligand Explains the Mechanism Underlying Full Antagonistic Action.,Kato A, Yamao M, Hashihara Y, Ishida H, Itoh T, Yamamoto K J Med Chem. 2017 Oct 26;60(20):8394-8406. doi: 10.1021/acs.jmedchem.7b00819. Epub, 2017 Oct 10. PMID:28954197[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|